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Abstract

We discuss the asymptotic properties with respect to nonparamet-
ric regression for circular data. We reveal theoretical properties for
circular nonparametric regression by applying von Mises (VM) and
wrapped Cauchy (WC) kernels. We derive the asymptotic normalities
and the convergence rate of the weighted conditional mean integrated
squared errors regarding VM and WC kernels. The numerical experi-
ment shows that WC kernel outperforms VM kernel in the small sam-
ples, and the theoretical properties are supported in the large samples.

1 Introduction

We aim to model the relation between a linear response variable Yi for yi ∈ R
and an circular explanatory variable Θi for θi ∈ [−π, π). Let the data set
{(Y1,Θ1), . . . , (Yn,Θn)} be i.i.d. Then, we consider that

Yi = m(Θi) + v1/2(Θi)εi,

where v(θ) =: VarY [Y |Θ = θ] is the conditional variance, εi is a random
variable on the real line with zero mean and unit variance, and a regression
function m(θ) := EY [Y |Θ = θ] is periodic such as m(θ) = m(θ + 2π).

We consider a regression being able to estimate m(θ) under less rigid
assumptions. One of the estimator is a nonparametric regression. In non-
parametric regressions for circular data analysis, a sine local linear regres-
sion (S-LLR) m̂(θ;κ) is proposed by [1]. S-LLR m̂(θ;κ) is defined as β̂0 that
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minimizes

n∑
i=1

{Yi − β0 − β1 sin(Θi − θ)}2Kκ(Θi − θ). (1)

where Kκ(θi − θ) is a symmetric kernel function, and κ is a concentration
parameter that is a smoothing parameter corresponding to the inverse of
the squared bandwidth: κ = h−2.

[1] derived the conditional mean squared error (MSE) of S-LLR by em-
ploying von Mises (VM) kernel, and calculated the optimal parameter of
this and the convergence rate of this MISE. However, few study explored
the theoretical properties for S-LLR employing another kernel functions such
as WC kernel, and no study shown the global properties of S-LLR such as
the conditional weighted mean integrated squared error (MISE) as far as we
know. Accordingly, we elucidate the MISEs of VM and wrapped Cauchy
(WC) kernels.

In section 2 we demonstrate the definitions of S-LLR and a class of
kernels, and the MSE of S-LLR by [1]. In addition we prove the asymptotic
normality for S-LLR. This result can provide the confidence interval for
S-LLR.

In section 3 we derive the MISE and the asymptotic normality of VM
kernel such as MISE and the asymptotic normality. And, we show the
convergence rate of this MISE is Op(n

−4/5).
In section 4 we provide the MISE and the asymptotic normality of WC

kernel. We show that the rate of this MISE is Op(n
−2/3). In the study for

Kernel density estimations for circular data, [5] derived that the rate of the
MISE of VM kernel is O(n−4/5), and that of WC kernel is O(n−2/3).

In section 5 we conduct the numerical experiment to compare the both
performances under finite samples. This experiment demonstrates that WC
kernel exhibit better properties than VM kernel when the sample is small,
and VM kernel well performs than WC kernel when the sample is large
enough.

2 Sine local linear regression (S-LLR)

S-LLR m̂(θ;κ) provided by minimizing (1) is given by

m̂(θ;κ) := eT1 (S
T
θ WθSθ)

−1ST
θ WθY , (2)
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where e1 is the 2 × 1 vector having 1 in the first and zero elsewhere, Y =
(Y1, . . . , Yn)

T is the vector of the responses,

Sθ :=

1 sin(Θ1 − θ)
...

...
1 sin(Θn − θ)


is an n× 2 design matrix, and Wθ := diag{Kκ(Θ1 − θ), . . . ,Kκ(Θn − θ)} is
an n× n diagonal matrix.

We employ a class of kernels Kκ(θ) satisfying the following definition
proposed by [1] and [2].

Definition 1. The kernel Kκ(θ) is a non-negative function satisfying the
two following conditions:

(a) It admits a convergent Fourier series representation:

Kκ(θ) = 1/(2π){1 + 2
∞∑
j=1

γj(κ) cos(jθ)},

where γj(κ) = EK [cos(jθ)] and γj(κ) are monotonic functions of κ.

(b) For all 0 < δ < π, limκ→∞
∫
δ≤|θ|≤π |Kκ(θ)|dθ = 0.

We now define a jth sine-type moment as

ηj(Kκ) :=

∫ π

−π
sin(θ)jKκ(θ)dθ

The jth sine-type moment ηj(Kκ) plays a similar role as a jth moment of a
symmetric kernel on the real line. Especially, the second sine-type moment
is given by

η2(Kκ) = (1− γ2(κ))/2. (3)

Put Θn := {Θ1, . . . ,Θn} and R(g) :=
∫ π
−π g(θ)

2dθ. Then, let the con-
ditional bias be BiasY [m̂(θ;κ)|Θn] =: EY [m̂(θ;κ)|Θn] −m(θ) and the con-
ditional variance of S-LLR be VarY [m̂(θ;κ)|Θn]. [1] derived the following
theorem regarding the bias and the variance.

Theorem 1. Assume that the following four conditions hold:

i) limn→∞ n−1R(Kκ) = 0.
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ii) limn→∞ γj(κ) = 1.

iii) The marginal density f(θ) is continuously differentiable, where f(θ) >
0 for any θ.

iv) The second derivative m′′(θ) and the conditional variance v(θ) are
continuous, respectively.

Then, the bias is approximately given by

BiasY [m̂(θ;κ)|Θn] ≃ η2(Kκ)
m′′(θ)

2!
, (4)

and the variance is approximately given by

VarY [m̂(θ;κ)|Θn] ≃ R(Kκ)
v(θ)

nf(θ)
. (5)

We derive the following asymptotic normality of S-LLR from combining
Theorem 1 and Linderberg’s central limit theorem (CLT).

Theorem 2. Assume that the all conditions of Theorem 1 hold. Then, it
follows that√

n/R(Kκ)[m̂(θ;κ)− EY [m̂(θ;κ)|Θn]]
d−→ N(0, v(θ)/f(θ)) n → ∞.

The proof is presented in Appendix A.
We find out that the bias depends on η2(Kκ), and the variance depends

on R(Kκ) in Theorem 1. For providing the convergence rate of the MSE of
Theorem 1, it is needed to divide this two terms into κ and any constant
part C(K), but it is difficult problem to obtain kernel’s general conditions
enabling this dividing. Therefore, we choose the two well-used VM and WC
kernels in circular data, and derive the asymptotic properties for S-LLR
applying the two kernels.

3 Theoretical properties for von Mises kernel

VM kernel Kκ(θ) is defined as

Kκ(θ) :=
1

2πI0(κ)
exp{κ cos θ} 0 < κ < ∞,
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where Ip(κ) denotes the modified Bessel function of the first kind and order
p. The coefficients of VM kernel are given by

γj(κ) = Ij(κ)/I0(κ).

(6)

VM kernel (density) is called as the circular normal density for having
the properties being similar to the normal density. For example, VM kernel
has good properties such that this belongs to exponential family, and the
maximum likelihood estimators (MLEs) of this have the explicit solutions.
However, VM kernel does not satisfy the reproductive property.

The second sine-type moment η2(Kκ) and the term R(Kκ) of VM kernel
are presented in the following Lemma.

Lemma 1. From combining (3) and (3.5.37) in [4], the second sine-type
moment for VM kernel is given by

η2(Kκ) =
I1(κ)

κI0(κ)
. (7)

If κ is large enough, then from combining (7) and (3.5.34) in [4], the second
sine-type moment η2(Kκ) is equal to

η2(Kκ) =
1

κ
{1 + op(1)}.

From (3.5.27) in [4], the term R(Kκ) is given by

R(Kκ) =
I0(2κ)

2πI0(κ)2
. (8)

If κ is large enough, then from combining (8) and (3.5.33) in [4], the term
R(Kκ) can approximate to

R(Kκ) ≃ κ1/2/(2π1/2).

We define MISE as MISEY [m̂(θ;κ)|Θn] := EY [
∫ π
−π{m̂(θ;κ)−m(θ)}2f(θ)dθ|Θn].

Then, we obtain the following theorem with respect to VM kernel form com-
bining Theorem 1 and Lemma 1.

Theorem 3. Assume that as n → ∞, κ → ∞, and n−1κ1/2 → 0. Then,
the bias is approximately given by

BiasY [m̂(θ;κ)|Θn] ≃
1

2κ
m′′(θ), (9)

5



and the variance is approximately given by

VarY [m̂(θ;κ)|Θn] ≃
κ1/2v(θ)

2π1/2nf(θ)
. (10)

From combining (9) and (10), we obtain the following asymptotic MISE that
is

AMISEY [m̂(θ;κ)|Θn] =
1

4κ2

∫ π

−π
m′′(θ)2f(θ)dθ +

κ1/2
∫ π
−π v(θ)dθ

2π1/2n
. (11)

The minimizer κ∗ of (11) is given by

κ∗ =

[
2π1/2

∫ π
−π m

′′(θ)2f(θ)dθ∫ π
−π v(θ)dθ

]2/5

n2/5. (12)

Therefore, the optimal AMISEY [m̂(θ;κ∗)|Θn] is Op(n
−4/5).

We obtain the following asymptotic normal distribution of VM kernel
from Theorems 2 and 3, and Lemma 1.

Theorem 4. Put κ = cnα, where c and α are any constants. Then, if
α > 2/5 and n → ∞, then it holds that

n1/2κ−1/4[m̂(θ;κ)−m(θ)]
d−→ N(0, v(θ)/{2π1/2f(θ)}),

The proof is presented in Appendix B.

4 Theoretical properties wrapped Cauchy kernel

WC kernel is defined as

Kρ(θ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ)
0 < ρ < 1,

where ρ is the concentration parameter. The coefficients of WC kernel are
given by

γj(ρ) = ρj .

The coefficients γj(ρ) are very simpler forms than that of VM kernel. Note
that WC kernel satisfies the reproductive property. This two points are
advantages for WC kernel. However, the MLEs of WC kernel generally does
not have the explicit solutions.

The second sine-type moment η2(Kρ) and the term R(Kρ) of WC kernel
are presented in the following Lemma.
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Lemma 2. The second sine-type moment of WC kernel is given by

η2(Kρ) = (1− ρ2)/2.

Using Parseval’s formula: R(Kρ) = (2π)−1{1 + 2
∑∞

j=1 γj(ρ)
2}，the term

R(Kρ) is approximately equal to

R(Kρ) =
1

π(1− ρ2)
− 1

2π

=
1

π(1− ρ2)
{1 + op(1)}.

We now put h = 1 − ρ2 0 < h < 1. Then, we derive the bias, the
variance and the MISE of WC kernel from combining Theorem 1 and Lemma
2.

Theorem 5. Assume that as n → ∞, h → 0 and nh → ∞. Then, the bias
is approximately given by

BiasY [m̂(θ;h)|Θn] ≃ h
m′′(θ)

4
, (13)

and the variance is approximately given by

VarY [m̂(θ;h)|Θn]s ≃ (nh)−1 v(θ)

πf(θ)
. (14)

From combining (13) and (14), we obtain the asymptotic MISE that is

AMISEY [m̂(θ;h)|Θn] =
h2

∫ π
−π m

′′(θ)2f(θ)dθ

16
+

∫ π
−π v(θ)dθ

πnh
. (15)

The minimizer h∗ of (15) is given by

h∗ =

{
8
∫ π
−π v(θ)dθ

π
∫ π
−π m

′′(θ)2f(θ)dθ

}1/3

n−1/3.

Hence, the optimal AMISEY [m̂(θ;h∗)|Θn] is Op(n
−2/3).

Comparing Theorems 3 and 5, these results indicate that S-LLR’s conver-
gence rates for AMISE are different speeds depending on a kernel employed.
This is different from the property that the standard LLR on the real line
always has the same rate of Op(n

−4/5) under non-negative kernels.
We obtain the following asymptotic distribution for WC kernel from

combining Theorem 2 and Lemma 2.
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Theorem 6. Put h = cnα, where c and α are any constants. Then, if
α < −1/3 and n → ∞, then it holds that

(nh)1/2[m̂(θ;h)−m(θ)]
d−→ N(0, v(θ)/{πf(θ)}),

5 Numerical experiment

We discussed theoretical aspects for VM kernel and WC kernel in the above
sections. From practical view point we want to investigate the performances
in finite samples for the both kernel through a numerical experiment.

We consider the following model:

Yi = m(Θi) + v1/2(Θi)εi εi
i.i.d.∼ N(0, 1), and v(Θi) = t2,

where the regression function is m(θ) = 2+3 cos(θ)+2 sin(3θ), and Θi follow
a circular uniform density: fCU(θ) = 1/(2π) for θ ∈ [−π, π), and are each
independent.

We produce S-LLRs applying VM and WC kerneld with each the optimal
parameter in the above settings, because we want to remove the influence
of estimating the the optimal parameter from the estimator of m(θ). The
optimal parameter of VM kernel is given by

κ̃ = [333n/(2π1/2t2)]2/5.

The optimal parameter of WC kernel is given by

h̃ = [32t2/(333n)]2/5.

We should pay attention to the fact that the small sample properties for
MISEY [m̂(θ; ·)|Θn] are greatly depend on sampling explanatory variables
Θn. Therefore, sampling 100 samples of Θn, we calculate the average of
MISE: Ave.MISE =

∑100
j=1MISEj,Y [m̂(θ; ·)|Θn]/100.

The numerical experiment executes the following seven procedures:

1. Generate a random sample {Θ1, . . . ,Θn} distributed as the circular
uniform density fCU(θ).

2. Generate a random sample {ε1, . . . , εn} distributed as the normal dis-
tribution N(0, t2).

3. Generate a random sample {Y1, . . . , Yn} from 1–2.
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4. Give VM kernel m̂(θ; κ̃) and WC kernel m̂(θ; h̃), respectively.

5. Calculate the numerical integrals ISEVM :=
∫ π
−π{m̂(θ; κ̃)−m(θ)}2/(2π)dθ

and ISEWC :=
∫ π
−π{m̂(θ; ρ̃)−m(θ)}2/(2π)dθ, respectively.

6. Repeat 1000 times from 2 to 5, and calculate MISEVM :=
∑

j ISEVM,j/1000
and MISEWC :=

∑
j ISEWC,j/1000, respectively.

7. Repeat 100 times from 1 to 6, and calculate Ave.MISEVM :=
∑

j MISEVM,j/100
and Ave.MISEWC :=

∑
j MISEWC,j/100, respectively.

Table 1 and Table 2 show that WC kernel outperforms VM kernel when
n ≤ 20, but VM kernel well performs than WC kernel when n ≥ 30. Table
3 and Table 4 indicate that WC kernel’s standard deviations with respect
to the MISE are smaller than VM kernel’s standard deviations. In other
words, WC kernel is stable estimator than VM kernel in the small samples.
These results show the advantage’s for WC kernel in the small samples. The
better performances of VM kernel when n ≥ 30 correspond to on the large
sample properties for VM and WC kernels.

6 Conclusion

We have shown the theoretical properties for S-LLRs applying VM and WC
kernels that involve the asymptotic normality and the MISE. The conver-
gence rate of the MISE of VM kernel is Op(n

−4/5), but the convergence rate
of that of WC kernel is Op(n

−2/3). Our numerical experiment have indi-
cated that WC kernel outperforms VM kernel in small samples, but in large
samples VM kernel well performs than WC kernel.

Table 1: The values are the averages of the weighted conditional MISE for
VM kernel: Ave.MISEVM :=

∑
j MISEVM,j/100．n are the sample sizes,

and t are the standard devision of errors.
n = 10 n = 20 n = 30 n = 40 n = 50 n = 100

t = 0.5 200.667 3.938 0.363 0.246 0.132 0.057

t = 1.0 11.314 1.441 0.678 0.401 0.315 0.158

t = 1.5 7.575 2.008 0.987 0.733 0.566 0.291

t = 2.0 12.122 2.805 1.470 1.076 0.840 0.447
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Table 2: The values are the averages of the weighted conditional MISE for
WC kernel: Ave.MISEWC :=

∑
j MISEWC,j/100．n are the sample sizes,

and t are the standard devision of errors.
n = 10 n = 20 n = 30 n = 40 n = 50 n = 100

t = 0.5 2.090 1.075 0.594 0.421 0.319 0.148

t = 1.0 2.627 1.258 0.846 0.597 0.519 0.292

t = 1.5 2.713 1.650 1.165 0.938 0.815 0.476

t = 2.0 4.161 2.256 1.602 1.254 1.061 0.657

Table 3: The values are the standard devisions of the weighted conditional
MISE for VM kernel. n = 10, 20, 30, 40, 50, 100 are the sample sizes, and
t = 0.5, 1.0, 1.5, 2.0 are the standard devision of errors.

n = 10 n = 20 n = 30 n = 40 n = 50 n = 100

t = 0.5 1784.428 28.477 0.390 0.377 0.040 0.009

t = 1.0 27.064 1.708 0.473 0.086 0.055 0.012

t = 1.5 18.149 2.043 0.407 0.303 0.086 0.021

t = 2.0 31.531 2.960 0.405 0.226 0.112 0.026

Table 4: The values are the standard devisions of the weighted conditional
MISE for WC kernel. n = 10, 20, 30, 40, 50, 100 are the sample sizes, and
t = 0.5, 1.0, 1.5, 2.0 are the standard devision of errors.

n = 10 n = 20 n = 30 n = 40 n = 50 n = 100

t = 0.5 1.197 0.814 0.395 0.306 0.137 0.051

t = 1.0 1.267 0.648 0.359 0.154 0.155 0.046

t = 1.5 1.080 0.593 0.325 0.228 0.228 0.063

t = 2.0 3.093 0.848 0.345 0.226 0.143 0.073
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Appendix A

We prove Theorem 2.

Proof. We use the Lindeberg’s CLT; For example, see [3] for the details.

Lemma 3. Suppose {X1, . . . Xn} is a sequence of independent random vari-
ables, each with the finite mean µi and the finite variance σ2

i . Put S2
n =∑n

i=1 σ
2
i . Put S2

n :=
∑n

i=1 σ
2
i , and let IA denote indicator function. If, for

any ε > 0, the Lindeberg’s condition:

lim
n→∞

1

S2
n

n∑
i=1

E[(Xi − µi)
2I{|Xi−µi|>εSn}] = 0 (16)
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is satisfied then, it holds that

1

Sn

∑
i

(Xi − µi)
d−→ N(0, 1),

as n → ∞.

From (2), we rewrite S-LLR as

m̂(θ;κ) = n−1eT1 (n
−1ST

θ WθS
T
θ )

−1ST
θ WθY . (17)

Put the vector eT1 (n
−1ST

θ WθSθ)
−1ST

θ Wθ = (c1, . . . , cn), where ci are any
constants. Then, from (17) S-LLR is given by the average of ciYi. That is,

m̂(θ;κ) = n−1
n∑

i=1

ciYi. (18)

From combining (5) and (18), we obtain the sum of variances of ciYi/
√
R(Kκ)

is approximately equal to

S2
n =

n∑
i=1

VarY [ciYi/
√

R(Kκ)|Θn]

= n2R(Kκ)
−1VarY [m̂(θ;κ)|Θn]

≃ n2R(Kκ)
−1R(Kκ)

v(θ)

nf(θ)

= nv(θ)/f(θ). (19)

It follows from (19) that as n → ∞, S2
n → ∞. If n is large enough, then

EY [(Yi − EY [Yi])
2I{(Yi−EY [Yi|Θn])>εSn}|Θn] is equal to

lim
n→∞

EY [(Yi − EY [Yi|Θn])
2I{Yi−EY [Yi|Θn]>εSn}|Θn]

= VarY [Yi|Θn]

− lim
n→∞

EY [(Yi − EY [Yi|Θn])
2I{Yi−EY [Yi|Θn]≤εSn}|Θn]

= VarY [Yi|Θn]−VarY [Yi|Θn]

= 0. (20)

From combining (19) and (20), it follows that

lim
n→∞

1

S2
n

n∑
i=1

EY [(ciYi/
√

R(Kκ)− EY [ciYi/
√

R(Kκ)|Θn])
2I{Yi−EY [Yi|Θn]>εSn}|Θn]

= lim
n→∞

1

S2
n

n∑
i=1

c2iR(Kκ)
−1EY [(Yi − EY [Yi|Θn])

2I{Yi−EY [Yi|Θn]>εSn}|Θn]

= 0. (21)
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From (21), we show that ciYi/
√

R(Kκ) satisfies Linderberg condition for
any ε > 0. Therefore, from considering Lemma 3, (18), and (19), we obtain
the following asymptotic distribution:

n√
nR(Kκ)v(θ)/f(θ)

[m̂(θ;κ)− EY [m̂(θ;κ)|Θn]]

=
n√

nv(θ)/f(θ)
[n−1

n∑
i=1

{ciYi/
√
R(Kκ)− EY [ciYi/

√
R(Kκ)|Θn]}]

=
1

Sn

n∑
i=1

{ciYi/
√

R(Kκ)− EY [ciYi/
√
R(Kκ)|Θn]}

d−→ N(0, 1), (22)

as n → ∞. Theorem 2 completes the proof from (22).

Appendix B

We prove Theorem 4.

Proof. From Theorem 2 and Lemma 1, we obtain the following asymptoti-
cally normal distribution:√

n

κ1/2/(2π1/2)
[m̂(θ;κ)− EY [m̂(θ;κ)|Θn]]

d−→ N(0, v(θ)/f(θ)). (23)

Equation (27) is reduced to

n1/2κ−1/4[m̂(θ;κ)− EY [m̂(θ;κ)|Θn]]
d−→ N(0, v(θ)/{2π1/2f(θ)}). (24)

We obtain that n1/2κ−1/4[m̂(θ;κ)−m(θ)] is equal to

n1/2κ−1/4[m̂(θ;κ)−m(θ)] = n1/2κ−1/4[m̂(θ;κ)− EY [m̂(θ;κ)|Θn]

+ n1/2κ−1/4BiasY [m̂(θ;κ)|Θn]. (25)

We put κ = cnα. Then, recalling that the equation (9) gives that BiasY [m̂(θ;κ)|Θn] =
O(κ−1), it follows that

n1/2κ−1/4BiasY [m̂(θ;κ)|Θn] ∝ n1/2κ−5/4

= Op(n
(2−5α)/4). (26)
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From (26), we show that α such as n(2−5α)/4 = op(1) is α > 2/5. Hence,
if α > 2/5 and n → ∞, then the second term of the right side in (25) is
vanished. Therefore, from combining (24), and (25), it holds that

n1/2κ−1/4[m̂(θ;κ)−m(θ)] ≃ n1/2κ−1/4[m̂(θ;κ)− EY [m̂(θ;κ)|Θn]]

d−→ N(0, v(θ)/{2π1/2f(θ)}) n → ∞. (27)

Theorem 4 completes the proof from (27).

Appendix C

We prove Theorem 6

Proof. From Theorem 2 and Lemma 2, we obtain the following asymptoti-
cally normal distribution:

(nh)1/2[m̂(θ;h)− EY [m̂(θ;h)|Θn]]
d−→ N(0, v(θ)/{πf(θ)}). (28)

We show that (nh)1/2[m̂(θ;h)−m(θ)] is equal to

(nh)1/2[m̂(θ;h)−m(θ)] = (nh)1/2[m̂(θ;h)− EY [m̂(θ;h)|Θn] + BiasY [m̂(θ;h)|Θn]]

= (nh)1/2[m̂(θ;h)− EY [m̂(θ;h)|Θn] + (nh)1/2BiasY [m̂(θ;h)|Θn].
(29)

We put h = cnα. Then, recalling that equation (13) gives that BiasY [m̂(θ;κ)|Θn] =
O(h), it follows that

(nh)1/2BiasY [m̂(θ;h)|Θn] ∝ n1/2h3/2

= Op(n
(1+3α)/2) (30)

From (30), we show that α such as n(1+3α)/2 = op(1) is α < −1/3. Hence,
if α < −1/3 and n → ∞, then the second term of the right side in (29) is
vanished. Therefore, from combining (28), and (29), it holds that

(nh)1/2[m̂(θ;h)−m(θ)] ≃ (nh)1/2[m̂(θ;h)− EY [m̂(θ;h)|Θn]]

d−→ N(0, v(θ)/{πf(θ)}), n → ∞. (31)

Theorem 6 completes the proof from (31).
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