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Abstract

We derive the asymptotic properties of the least squares cross-validation (LSCV) selector and
the direct plug-in rule (DPI) selector in the kernel density estimation for circular data. The DPI
selector has the convergence rate O(n−5/14), although the rate of the LSCV selector is O(n−1/10).
Our simulation shows that the DPI selector has a smaller variance and more stability than the
LSCV selector, even when n is not large enough. In other words, the DPI selector outperforms
the LSCV selector with

1 Introduction

Kernel density estimation is the standard nonparametric method for exploring the structure of
circular data that distributes on the circle. The structure of the kernel density estimator is largely
influenced by the value of the smoothing parameter. Therefore, the selection of the smoothing
parameter is an important problem in the practical analysis of circular data.

Automatic selectors of the smoothing parameter for circular data are proposed, and the practical
performances studied through the simulation. However, to our knowledge, no study has derived
theoretical properties for the selectors in the field of circular data analysis.

We will explore the least squares cross-validation (LSCV) selector proposed by [Hall et al.(1987)]
and the direct plug-in rule (DPI) selector proposed by [Di Marzio et al.(2011)]. The LSCV selector
has been commonly used in the circular data analysis because of the simple definition. A few
studies researched the properties of the DPI selector for circular data. However, in the studies on
selectors for real line data, [Wand and Jones (1994)] pointed out that the DPI selector has a better
performance than the LSCV selector with respect to the convergence rate to the optimal smoothing
parameter.

This paper derives theoretical properties of both the LSCV selector and the DPI selector
that include the asymptotic normality and the convergence rate: See [Hall and Marron(1987)],
[Scott and Terrell (1987)], and [Sheather and Jones (1991)] for previous studies regarding real line
data. The authors obtained the rates from the central limit theorem of a degenerate U-statistic
given by [Hall(1984)]. We demonstrate that the converge rate of the DPI selector is O(n−5/14) and
that of the LSCV selector is O(n−1/10). Numerical experiments show that DPI is much more stable
than LSCV even when sample size n is not large enough.

∗Graduate School of Human and Socio-Environmental Studies, Kanazawa University.
†School of Economics, Kanazawa University.
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2 Properties of kernel density estimation

We give the definitions and the asymptotic properties of the kernel density estimators on the circle.
A kernel density estimator f̂κ(θ) of unknown density f based on a random sample Θ1, . . . ,Θn is
defined as

f̂κ(θ) =
1

n

n∑
i=1

Kκ(θ −Θi),

where Kκ(θ) is a symmetric kernel function, and κ is a concentration parameter that plays the
role of a smoothing parameter, and corresponds to κ = h−2 for a general bandwidth h > 0. Our
loss function between f̂κ and f is integrated squared error (ISE) given by ISE[f̂κ] :=

∫ π
−π{f̂κ(θ) −

f(θ)}2dθ. The risk is mean integrated squared error (MISE) given by MISE[f̂κ] := Ef [ISE[f̂κ]].
We now employ a kernel function for circular data that is proposed by [Hall et al.(1987)].

Definition 1. (Kernel function)
A function Kκ(θ) : [−π, π) → R is said to be a kernel function. Let Kκ(θ) denote Kκ(θ) :=

C−1
κ (L)Lκ(θ), where

Lκ(θ) := L(κ{1− cos(θ)}) (2.1)

and Cκ(L) :=
∫ π
−π Lκ(θ)dθ. We define the l th moment of L as

µl(L) :=

∫ ∞

0
L(r)r(l−1)/2dr,

where l ≥ 0 is even and r = κ{1−cos(θ)}. The main term L satisfies the following seven conditions:

(a) The fourth derivative L(4)(r) := d(4)L(r)/dr4 is continuous,

(b) If r is large, then, L(r)r(p+1)/2 = O(r−(p+4)/2),

(c) The term δ2t(L) :=
∫∞
−∞ L2(z2/2)z2tdz has bounded for t = 0, 1.

(d) The moments µl(L) has bounded for 0 ≤ l ≤ p+4, and µl(L) = µκ,l(L)+O(κ−(p+6)/2), where
µκ,l(L) :=

∫ κ
0 L(r)r

(l−1)/2dr.

(e) lim|z|→∞ η(z)|z|3/2 = o(1), where η(z) :=
∫∞
−∞ L(t2/2)L((t+ z)2/2)dt.

(f) lim|z|→∞ λ(z)|z|3/2 = o(1), where λ(L) :=
∫∞
−∞ L′(t2/2)L((t+ z)2/2)t2/2dt is bounded,

(g) The term δt(S
m
4 ) :=

∫∞
−∞ S2m

4 (z2/2)z2tdz is bounded for t = 1, 2 and m = 1, 2, where

S4(z
2/2) := 3S(2)(z2/2)− 6z2S(3)(z2/2) + z4S(4)(z2/2).

The conditions (a), (c), and (d) are required to derive MISE[f̂κ]; we can replace the condition
(a) on the assumption that L′ is continuous. We use the conditions (a)–(f) to prove the theoretical
properties regarding the LSCV selector, and also need the conditions (a), (c), (d), and (g) to prove
the theoretical properties regarding the DPI selector.

The kernel consisting of L(r) = e−r satisfies all the conditions of Definition 1, and it is equivalent
to the von Mises (VM) kernel such as Lκ(θ) = exp[−κ{1 − cos(θ)}]. [Hall et al.(1987)] suggested
that smooth and rapidly varying kernels of type (2.1) are asymptotically equivalent to the kernel of
L(r) = e−r.

We now define the pth-order kernel function.

2



Definition 2. (p th-order kernel function)
Let p ≥ 2 be even. We say that Kκ(θ) is a pth-order kernel, if,

µ0(L) ̸= 0, µl(L) = 0, l = 2, 4, · · · , p− 2, and µl(L) ̸= 0 l = p.

LetR(g(θ)θt) :=
∫ π
−π g

2(θ)θ2tdθ. Then, [Tsuruta and Sagae (2016)] derived the following asymp-
totic MISE by combining Lemma A.1–A.3 in Appendix A.

Theorem 1. Assume that the following conditions hold:

(i) κ = κ(n) and limn→∞ κ(n) = ∞,

(ii) limn→∞ n−1κ1/2(n) = 0,

(iii) f is p+ 2th differentiable and f (s) is square-integrable for s = 1, 2, · · · , p.

Then, employing a pth-order kernel, MISE is given by

MISE[f̂κ] =
µ2p(L)

µ20(L)
R

( p/2∑
t=1

bp,2tf
(2t)

(2t)!

)
κ−p + n−1κ1/2d(L) + o(κ−p + n−1κ1/2). (2.2)

The details of the constants of bp,2t and d(L) are presented in Appendix A. The first two terms on

the left side of (2.2) are referred to AMISE[f̂κ]. When we employ a second-order kernel, we show
that AMISE[f̂κ] is equivalent to

AMISE[f̂κ] =
µ22(L)

µ20(L)
R(f ′′)κ−2 + n−1κ1/2d(L), (2.3)

where b2,2 = 2, and the minimizer κ∗ of (2.3) is given by

κ∗ = β(L)R(f (2))2/5n2/5, (2.4)

where β(L) := [4µ22(L)/{µ20(L)d(L)}]2/5.

The sketch of the proof is presented in Appendix-D in Tsuruta and Sagae (2016).
Higher-order kernels for p ≥ 4 improve the MISE, but sacrifice the non-negative value so that

the lower moments are 0. Therefore, we believe that most researchers prefer second-order kernels
in practical analysis, because they are non-negative kernels. This paper focuses on the selectors of
κ∗, which is the optimal smoothing parameter for second-order kernel density estimators.

3 Bandwidth selectors

3.1 Least squares cross-validation

The motivation of the LSCV selector comes from the minimization of ISE[f̂κ] − R(f). The LSCV
selector κ̂CV is defined as the minimizer of the CV function given by

CV(κ) := R(f̂)− 2

n

n∑
i=1

f̂−i(Θi), (3.1)
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where f̂−i(Θi) = (n− 1)−1
∑n

i ̸=j Kκ(θ −Θj). Hereafter, we use only the second-order kernels with
respect to LSCV. If n is sufficiently large, then the equation (3.1) is replaced by

CV(κ) :=
R(Kκ)

n
+

2

n2

∑
i<j

γ(yij), (3.2)

where yij := Θi − Θj and γ(y) =
∫ π
−πKκ(w)Kκ(w + y)dy − 2Kκ(y). We apply the augmented

cross-validation CV(κ) given by

CV(κ) := CV(κ) +
2

n

∑
i

f(Θi)−R(f),

for theoretical analysis. Then, we obtain the variance of CV(κ) that has a faster order than that
of CV (κ), and is similar to that derived by [Scott and Terrell (1987)]: they indicated that the aug-
mented cross-validation for the real line data provides a smaller variance. We derive the expectation
and variance of CV(κ) as the following theorem.

Theorem 2. Assume that the three conditions of Theorem 1, R(f (4)f1/2) <∞, andR((f (4))1/2f) <
∞.

Then, it follows that

Ef [CV(κ)] = AMISE[f̂κ] + o(κ−2 + n−1κ1/2), (3.3)

and

Varf [CV(κ)] =
2

n2
κ1/2Q(L)R(f) + o(n−2κ1/2 + n−1κ−2), (3.4)

where Q(L) :=
∫∞
−∞

{
2−1µ−2

0 (L)η(z)− 21/2µ−1
0 (L)L(z2/2)

}2

dz.

Proof. We set γ(yij) = γij to ease of notation. First, we calculate the expectation of CV(κ), which
is given by

Ef [CV(κ)] =
R(Kκ)

n
+

2

n2

∑
i<j

Ef [γij ] +
2

n

∑
i

Ef [f(Θi)]−R(f). (3.5)

We set γi = Ef [γij |Θi]. Then, the conditional expectation γi is given by

γi = −f(Θi) + f (4)(Θi)µ
−2
0 (L)µ22(L)κ

−2 +O(κ−3). (3.6)

The details are presented in Appendix B. It follows from (3.6) that

Ef [γij ] = Ef [γi]

= −R(f) +R(f (2))µ−2
0 (L)µ22(L)κ

−2 +O(κ−3). (3.7)

By considering Lemma A.3, (3.7), and Ef [f(Θi)] = R(f), we obtain that Ef [CV(κ)] is equivalent
to (3.3).
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We calculate the variance of CV(κ). That is,

Varf [CV(κ)] ≃ 2

n2
Varf [γij ] +

4

n
Varf [f(Θi)] +

4

n
Covf [γij , γik] +

8

n
Covf [γij , f(Θi)] , (3.8)

where j ̸= k. Let I1 := R((f (4))1/2f), I2 := R(f (2))R(f), and I3: = R(f3/2)−R(f)2. Each term of
the right side regarding (3.8) are given by

Varf [γij ] = κ1/2[Q(L)R(f) + o(1)], (3.9)

Varf [f(Θi)] = I3, (3.10)

Covf [γij , γik] = I3 − 2{I1 − I2}µ−2
0 (L)µ22(L)κ

−2 + o(κ−2), (3.11)

and

Covf [γij , f(Θi)] = −I3 + {I1 − I2}µ−2
0 (L)µ22(L)κ

−2 + o(κ−2). (3.12)

The details of (3.9)–(3.10) are presented in Appendix C. By considering (3.8)– (3.10), we obtain
that Varf [CV(κ)] is equivalent to (3.4).

With a strategy similar to [Scott and Terrell (1987)], Theorem 2 leads to that the LSCV selector
κ̂CV is consistent with the minimizer κ∗.

Corollary 1. Let κ̂CV := arg min
κ∈(aκ∗,bκ∗)

CV(κ) for a < b. Then, it holds that

κ̂CV/κ∗
p−→ 1,

as n→ ∞.

Proof. We set c := κ̂CV/κ∗. Then, it is derived from combining Theorem 1 and Theorem 2 that

AMISE(cκ∗)/MISE(cκ∗)
p−→ 1, (3.13)

CV(cκ∗)/MISE(cκ∗)
p−→ 1, (3.14)

and

AMISE(cκ∗)/AMISE(κ∗) =
1

5c2
+

4c1/2

5
. (3.15)

The equation (3.15) is the convex function such as the minimum at c = 1. Thus, if c ̸= 1 and n is
large, then it follows from combining (3.13) and (3.15) that

MISE(cκ∗) > MISE(κ∗). (3.16)

Suppose that c does not converge to 1. Recall that it is necessary that CV(cκ∗) ≤ CV(κ) for
any κ, because κ̂CV is the minimizer of CV(κ). Also, if n is large, then it is shown that CV(κ) is
the convex function such as the minimum at κ = cκ∗, because we obtain that CV(κ) approximates
AMISE(κ) from Theorem 2. Therefore, it follows that

P (CV(cκ∗) < CV(κ∗)) → 1, (3.17)

as n→ ∞. From (3.14) and (3.17), then it holds that

MISE(cκ∗) < MISE(κ∗), (3.18)

as n→ ∞. By contradiction between (3.16) and (3.18), this completes the proof.
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3.2 Direct plug-in rule

Note that ψr :=
∫ π
−π f

(r)(θ)f(θ)dθ and R(f (r)) = (−1)rψ2r. We now define the DPI estimator as

κ̂PI = β(L)ψ̂4(g)
2/5n2/5,

where

ψ̂4(g) := n−1
n∑

i=1

f̂ (4)g (Θi) = n−2
n∑

i=1

n∑
j=1

T (4)
g (Θi −Θj), (3.19)

where T
(4)
g (θ) := C−1

κ (L)S
(4)
g (θ), and g and Tg(θ) := C−1

κ (S)Sg(θ) are a smoothing parameter and

a kernel that is possibly different from κ and Kκ, respectively. The main term S
(4)
g (θ) is given by

S(4)
g (θ) := −g cos(θ)S(1)

g (θ) + g2{−4 sin2(θ) + 3 cos2(θ)}S(2)
g (θ)

+ 6g3 cos(θ) sin2(θ)S(3)
g (θ) + g4 sin4(θ)S(4)

g (θ). (3.20)

The asymptotic properties for mean square error (MSE) of ψ̂4 play an important role in showing
the theoretical properties of κ̂PI in the next section. We provide the bias and the variance of ψ̂4(g)
in the following theorem.

Theorem 3. Assume that the following conditions hold:

(i) g := g(n), limn→∞ g(n) = ∞, and limn→∞ n−2g9/2(n) = 0,

(ii) f is (4 + p)th differentiable, ψ4+2t is bounded for t = 1, 2, . . . , p/2.

Then, when we employ a pth-order kernel, the bias is given by

Biasf [ψ̂4(g)] = Abiasf [ψ̂4(g)] +O(n−1g3/2 + g−(p+2)/2), (3.21)

where,

Abiasf [ψ̂4(g)] =
3g5/2S

(2)
g (0)

21/2µ0(S)n
+
µp(S)

µ0(S)

p/2∑
t=1

bp,2tψ4+2t

(2t)!
g−p/2,

and the variance is given by

Varf [ψ̂4(g)] =
4

n
Var[f (4)(Θi)] +

2G1,0(S4)ψ0g
9/2

n2
+ o(n−1 + n−2g9/2). (3.22)

where Gm,t(S4) := 2−mµ−2m
0 (S)δt(S

m
4 ).

Proof. Let Uij = T
(4)
g (Θi −Θj), andUi = Ef [Uij |Θi]. The expectation of ψ̂4(g) is given by

Ef [ψ̂4(g)] = n−1T (4)
g (0) + 2n−2

∑
i<j

Ef [Uij ]. (3.23)
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It follows from (3.20) that

S(4)
g (0) = 3g2[S(2)

g (0) +O(g−1)]. (3.24)

By combining (3.24) and Lemma A.1, we obtain that the first term of the right side of (3.23) is
equal to

n−1T (4)
g (0) =

3g5/2[S
(2)
g (0) +O(g−1)]

21/2µ0(S)n
. (3.25)

It follows from Lemma A. 2 that

Ui =

∫ π

−π
T (4)
g (θj −Θi)f(θj)dθj

=

∫ π

−π
Tg(θj −Θi)f

(4)(θj)dθj

=

p/2∑
t=0

f (4+2t)(Θi)

(2t)!
α2t(Tg) +O(αp+2(Tg))

= f (4)(Θi) + µ−1
0 (S)µp(S)g

−p/2

p/2∑
t=1

bp,2tf
(4+2t)(Θi)

(2t)!
+O(g−(p+2)/2), (3.26)

The expectation Ef [Uij ] of (3.23) is given by the expectation of (3.26) over Θi

Ef [Uij ] = Ef [Ui]

= ψ4 + µ−1
0 (S)µp(S)g

−p/2

p/2∑
t=1

bp,2tψ4+2t

(2t)!
+O(g−(p+2)/2). (3.27)

We obtain the bias (3.21) from combining (3.23), (3.25) and (3.27).
We derive the variance of ψ̂4(g). We set Wij := Uij − Ui − Uj + Ef [Ui] and Zi := Ui − Ef [Ui].

Then, we obtain that Ef [Wij ] = 0, Ef [Zi] = 0 and Covf [ZiWij ] = 0. By using Wij and Zi. we

present ψ̂4(g)− Ef [ψ̂4(g)] as

ψ̂4(g)− Ef [ψ̂4(g)] =
2(n− 1)

n2

∑
i

Zi +
2

n2

∑
i<j

Wij . (3.28)

Thus, the variance of ψ̂4 is equal to

Varf [ψ̂4(g)] = Ef

2(n− 1)

n2

∑
i

Zi +
2

n2

∑
i<j

Wij


2

=
4(n− 1)2

n4

∑
i

Varf [Zi] +
4

n4

∑
i<j

Varf [Wij ]. (3.29)
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By combining (3.26) and (3.27), Varf [Zi] is reduced to

Varf [Zi] = E[U2
i ]− E[Ui]

2

=

∫ π

−π
f (4)(θi)

2f(θi)dθi −
[∫ π

−π
f (4)(θi)f(θi)dθi

]2
+ o(1)

= Var[f (4)(Θi)] + o(1). (3.30)

By considering (3.27), Ef [U
2
ij ] = g9/2[G1,0(S4)ψ0 + o(1)], and E[U2

i ] = E[Ui]
2 = O(1) (The details

of Ef [U
2
ij ] and E[U2

i ] are presented in Appendix D.), we obtain Varf [Wij ]. That is,

Varf [Wij ] = Ef [U
2
ij ]− 2Ef [U

2
i ] + Ef [Ui]

2

= g9/2[G1,0(S4)ψ0 + o(1)]. (3.31)

We obtain (3.22) from combining (3.29) (3.30), and (3.31).

Theorem 3 easily shows the optimal MSE.

Corollary 2. Select the optimal smoothing parameter g∗ > 0 such as that Abiasf [ψ̂(g)] = 0. Then,
g∗ is given by

g∗ =W (S)n2/(p+5), (3.32)

where W (S) =
[
−{21/2µp(S)

∑p/2
t=1[ψ4+2tbp,2t/(2t)!]}/{3S(2)

g (0)}
]2/(p+5)

. The remaining squared

bias can be ignored by Bias2f [ψ̂4(g)] = O(n−(2p+4)/(p+5)). In other words, The convergence rate of

the minimum MSE depends on only the variance Varf [ψ̂4(g)]. If p < 4, then, infg>0MSE[ψ̂r(g)] is
equivalent to the second term of the right side of (3.22), if p = 4, then, it is equivalent to the first
two terms of that, otherwise, it is equivalent to only the first term of that. Thus, infg>0MSE[ψ̂4(g)]
is presented as

inf
g>0

MSE[ψ̂4(g)] =

{
O(n−(2p+1)/(p+5)) p < 4,

O(n−1) p ≥ 4.

Corollary 2 indicates that employing a higher-order kernel for p ≥ 4 achieves the parametric
rate of O(n−1). However, it is greatly difficult to inspect whichever higher-order kernels satisfy
the positive condition of g∗, because the sign of g∗ depends on Tg and the sum of some unknown
functionals ψr; we may need to know the unknown density f to know the sign of g∗.

If Tg is a second-order kernel, then the sign of g∗ depends on only Tg. Hence, we always obtain
a positive g∗ by applying the suitable kernels such that µ2/S(0) is positive, because ψ6 = −R(f (3)).
We recommend employing suitable second-order kernels such as a VM kernel to estimate ψ4.

We obtain g∗ = [cψ6n]
2/7 for the suitable second-order kernels, where c = −2−1/2µ2(S)/(6S

(2)
g (0)).

Estimating g∗ also requires estimating an unknown functional ψ6. We provide the simplest estima-
tor of ψ6 by assuming that a true density is a VM density fVM(θ; τ) := (2πI0(τ)

−1 exp{τ cos(θ)},
where Ip(τ) denotes the modified Bessel function of the first kind and the order p, and τ is the
concentration parameter. The estimator of ψ6 is given by

ψ̂VM
6 := −[4τ̂ I1(2τ̂) + 30τ̂2I2(2τ̂) + 15τ̂3I3(2τ̂)]/{16πI20 (τ̂)}.

We propose the easy and practical algorithm for direct plug-in rule, called for “One-step direct
plug-in rule”.
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Algorithm 1. One-step direct plug-in rule conducts the following procedure:

Step.1 Calculate ML estimator τ̂ and ψ̂VM
6 .

Step.2 Give ĝ := [cψ̂VM
6 n]2/7 as the estimator of g∗.

Step.3 Give κ̂PI = β(L)ψ̂4(ĝ)
2/5n2/5.

4 Theoretical properties for the selectors

From theoretical perspective, we must inspect whether the DPI selector outperforms the LSCV
selector. The theoretical performance for the selector κ̂ is measured by the convergence rate of the
relative error: κ̂/κ∗ − 1. The rate is derived through the asymptotically normal distribution:

nα(κ̂/κ∗ − 1)
d−→ N

(
0, σ2

)
,

where σ2 < ∞ depends only on f and L, but not on n. The asymptotic distribution of LSCV and
DPI are shown in Theorem 4 and Theorem 5, respectively.

Theorem 4. Assume that all the conditions of Theorem 1 and Theorem 2 hold: then, it holds that

n1/10(κ̂CV/κ∗ − 1)
d−→ N

(
0, σ2CV

)
, (4.1)

as n→ ∞, where σ2CV := 50d−2(L)M1,0(L)R(f)β
−1/2(L)R(f ′′)−1/5, andMm,t(L) :=

∫∞
−∞m(L)2mz2tdm,

where

m(L) := 2−1µ−2
0 (L){η(z) + λ(z) + λ(−z)} − 2−1/2µ−1

0 (L){L(z2/2) + L(z2/2)z2}.

Theorem 5. Assume that the conditions of Theorem 3 hold. Then, when we employ the suitable
second-order kernel, and it holds that

n5/14(κ̂PI/κ∗ − 1)
d−→ N

(
0, σ2CV

)
, (4.2)

as n→ ∞, where σ2PI = 8W 9/2(S)G1,0(S4)ψ0ψ
−2
4 /25.

Theorems 4 and 5 are proved by the asymptotic normality of a degenerate U-statistic given by
[Hall(1984)]. We give the definition of a degenerate U-statistic. A U-statistic is defined as Un :=∑

i<j Hij , where Hij := H(Θi,Θj) and Hij is symmetric and Ef [Hij ] = 0. Let the degenerate U-
statistic be the U-statistic satisfying Ef [Hij |Θi] = 0. The following lemma describes the asymptotic
normality of a degenerate U-statistic.

Lemma 1 ([Hall(1984)] ). Assume that Hij is symmetric, and Ef [Hij |Θi] = 0, almost surely and
Ef [H

2
ijΘi] <∞ for each n. We set Gij := E[HiiHij ]. if

E[G2
ij ] + n−1Ef [H

4
ij ]

Ef [H
2
ij ]

2
→ 0, (4.3)

as n→ ∞, then, it holds that ∑
1≤i<j≤n

Hij
d−→ N(0, n2E[H2

ij ]/2).
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We now prove Theorem 4.

Proof of Theorem 4. If n is large, it follows from Lemma A.3 that

CV(κ) ≃ d(L)κ1/2

n
+

2

n2

∑
i<j

γ(yij). (4.4)

The derivative of (4.4) is given by

dCV(κ)

dκ
≃ d(L)

2nκ1/2
+

2

n2κ1/2

∑
i<j

Vij , (4.5)

where

Vij := κ−1/2[γ(yij) + ρ(yij) + 3/4µ−1
0 (L)µ2(L)κ

−1τ(yij)],

ϕκ(yij) := κC−1
κ (L)

d

dκ
Lκ(yij),

ρ(yij) := Kκ(yij) +

∫ π

−π
{ϕκ(w)Kκ(w + yij) +Kκ(w)ϕκ(w + yij)}dw − 2ϕκ(yij),

and

τ(yij) :=

∫ π

−π
Kκ(w)Kκ(w + yij)dw −Kκ(yij).

The details are presented in Appendix E. The selector κ̂CV satisfies that dCV(κ)/dκ |κ=κ̂CV
= 0.

This is equivalent to

2n−2
∑
i<j

Vij

∣∣∣∣∣∣
κ=κ̂CV

= −d(L)/(2n). (4.6)

Note that Vi := Ef [Vij |Θi]. Then, we set Hij := Vij −Vi −Vj +Ef [Vi] and Xi := Vi −Ef [Vi]. Then,
we rewrite 2n−2

∑
i<j{Vij − Ef [Vij ]} as

2n−2
∑
i<j

Vij − 2n−2
∑
i<j

Ef [Vij ] ≃ 2n−1
∑
i

Xi + 2n−2
∑
i<j

Hij ,

where 2n−2
∑

i<j Hij is the degenerate U-statistic. We obtain the asymptotic normality for 2n−1
∑

iXi

from the standard central limit theorem (CLT). That is,

2

n

∑
i

Xi
d−→ N

(
0, Bn−1κ−5

)
, (4.7)

where, B := 16µ42(L){R(f (4)f1/2) − R(f ′′)2}/{µ40(L)}. The details are presented in Appendix F.
We obtain the asymptotic normality for 2n−2

∑
i<j Hij from Lemma 1. that is,

2

n2

∑
i<j

Hij
d−→ N(0, 2n−2κ−1/2M1,0(L)R(f)). (4.8)
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See Appendix-G for details. It is derived from combining (4.7) and (4.8) that the asymptotically
normal for 2n−2

∑
i<j Vij is

2

n2

∑
i<j

Vij
d−→ N

(
−2R(f ′′)µ−2

0 (L)µ22(L)κ
−5/2, Bn−1κ−5 + 2n−2κ−1/2M1,0(L)R(f)

)
. (4.9)

We take κ = κ̂CV in (4.9). Then, we replace κ̂CV in the variance to κ∗ by Corollary 1. Thus, it
follows from combining (4.6) and (4.9) that

−2R(f ′′)µ−2
0 (L)µ22(L)κ̂

−5/2
CV

d−→ N

(
−d(L)

2n
, Bn−1κ−5

∗ + 2n−2κ
−1/2
∗ M1,0(L)R(f)

)
. (4.10)

the first term for the variance of (4.10) is ignored, because the convergence rate of the first term is
O(n−3), and that of the second term is O(n−11/5) by using κ∗ = O(n2/5). From (2.4), we obtain

that R(f ′′)µ22(L)n/(d(L)µ0(L)) = κ
5/2
∗ . Thus, (4.10) is reduced to

(κ̂CV/κ∗)
−5/2 d−→ N

(
1, 8d(L)−2M1,0(L)R(f)κ

1/2
∗

)
. (4.11)

Let g(x) = x−5/2. Then, it follows that g(1)=1 and {g′(1)}2 = 25/4. We obtain the asymptotic
normality for κ̂CV/κ∗ by applying the delta method to (4.11). That is,

κ̂CV/κ∗
d−→ N

(
1, 50d(L)−2M1,0(L)R(f)β(L)

−1/2R(f ′′)−1/5n−1/5.
)
. (4.12)

Theorem 4 completes the proof from (4.12).

Next, we prove Theorem 5.

Proof of Theorem 5. The Taylor expansion κ̂PI = κ̂PI(ψ̂4(g∗)) is given by

κ̂PI(ψ̂4(g∗)) ≃ β(L)n2/5ψ
2/5
4 +

2

5
β(L)n2/5ψ

−3/5
4 (ψ̂4(g∗)− ψ4)

= κ∗[1 + 2(ψ̂4(g∗)− ψ4)/(5ψ4)]. (4.13)

Equation (4.13) is reduced to

κ̂PI/κ∗ − 1 =
2

5ψ4
(ψ̂4(g∗)− ψ4). (4.14)

Noting Wij := Uij − Ui − Uj + Ef [Ui], and Zi := Ui − Ef [Ui], it follows that (3.28) becomes

ψ̂4(g)− Ef [ψ̂4(g)] ≃ 2n−1
∑
i

Zi + 2n−2
∑
i<j

Wij , (4.15)

where 2n−2
∑

i<j Wij is the degenerate U-statistic. From (3.30), we obtain the asymptotic normality
distribution from the standard CLT. That is,

n−1/2
∑
i

Zi
d−→ N(0,Varf [f(Θi)]). (4.16)
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If we choose g∗ =W (S)n2/7, then applying Lemma 1 to 2n−2
∑

i<j Wij , it is given by

2

n2

∑
i<j

Wij
d−→ N(0, 2n−2g

9/2
∗ G1,0(S4)ψ0), (4.17)

as n → ∞. The details are presented in Appendix H. By combining (4.16) and (4.17), we obtain
the asymptotic distribution of (4.15). That is,

ψ̂4(g∗)− Ef [ψ̂4(g∗)]
d−→ N(0, 4n−1Varf [f(Θi)] + 2n−2g

9/2
∗ G1,0(S4)ψ0). (4.18)

Corollary 2 shows that the rate of Varf [ψ̂4(g
∗)] is the order n−5/7. Thus, the equation (4.18) is

reduced to

n5/14{ψ̂4(g∗)− Ef [ψ̂4(g∗)]}
d−→ N(0, 2W 9/2(S)G1,0(S4)ψ0). (4.19)

The main team ψ̂4(g∗)− ψ4 of the right side for (4.14) is equivalent to

n5/14{ψ̂4(g∗)− ψ4} = n5/14{ψ̂4(g∗)− Ef [ψ̂4(g∗)]} − n5/14Biasf [ψ̂4(g∗)]. (4.20)

We show that Biasf [ψ̂4(g
∗)] = O(n−4/7) from Corollary 2. Then, we obtain that n5/14Biasf [ψ̂4(g∗)]

is O(n−3/14). Thus, if n is large, then this term is ignored. Therefore, the asymptotic normal
distribution for n5/14{ψ̂4(g∗)− ψ4} is given by

n5/14{ψ̂4(g)− ψ4}
d−→ N(0, 2W 9/2(S)G1,0(S4)ψ0). (4.21)

Therefore, as n→ ∞, Theorem 5 completes the proof from (4.21) and (4.14).

The convergence rate of κ̂CV and κ̂PI are equivalent to that of LSCV selector and DPI selector on
the real line, respectively ([Hall and Marron(1987)], [Scott and Terrell (1987)], and [Sheather and Jones (1991)]).
The rate of κ̂PI is greatly faster than that of κ̂CV. Moreover, κ̂PI is more stable with the smaller order
of variance. Therefore, the DPI selector is more appealing with respect to theoretical performances
than the LSCV selector.

5 Numerical experiment

Analyzing practical data of a small sample size often does not have the same effect as the theoretical
results. Therefore, we need to perform a simulation for comparing the LSCV selector and the DPI
selector. Our simulation in statistical software R is conducted by the following procedure:

1. Generate the random sample of size n distributed as the VM distribution fVM(θ; τ = 1).

2. Calculate the optimal parameter κ∗ applying fVM(θ; τ = 1) to (2.4).

3. Estimate κ̂CV by bw.cv.mse.circular, which is the function in circular library of R.

4. Estimate κ̂PI by the One-step plug-in rule.

5. Calculate YCV = log(κ̂CV/k∗) and YPI = log(κ̂PI/k∗).

12



6. Repeat Step 1–5 1000 times, and give the kernel density estimators of YCV and YPI to estimate
the bandwidth h with normal reference rule, respectively.

Fig. 1 shows that the DPI selector κ̂PI has a smaller variance and bias than the LSCV selector
κ̂CV. In other words, κ̂PI is more stable. The LSCV selector κ̂CV trends to be undersmoothing,
although it is sometimes greatly oversmoothing even if n = 1000. The simulation indicates that κ̂PI
performs better than κ̂CV in practical analysis.
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(a) Sample size n is 100.
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(b) Sample size n is 1000.

Figure 1: The solid line is the kernel density estimator of log(κ̂PI/k∗) and the broken line is the
kernel density estimator of log(κ̂CV/k∗), where κ̂PI is the DPI selector, κ̂CV is the LSCV selector,
and κ∗ is the optimal smoothing parameter. The selectors are based on 1000 simulated samples of
size n = 100 and 1000 from the VM density.

6 Conclusion

We derived the asymptotic properties for the least squares cross-validation selector and the direct
plug-in selector for circular data. The convergence rate of the DPI selector is O(n−5/14) and that
of the LSCV selector is O(n−1/10). The rates are equivalent to the two selectors on the real line,
respectively. Thus, the theoretical performance of the DPI selector is better than that of the LSCV
selector. Our simulation shows that the DPI selector is more stable than the LSCV selector.
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Appendix A

Lemma A. 1. If Kκ is a pth-order kernel，then, Cκ(L) is reduced to

Cκ(L) = κ−1/221/2µ0(L) +O(κ−(p+1)/2).

Lemma A. 2. We set αj(Kκ) :=
∫ π
−πKκ(θ)θ

jdθ, gj(r/κ) := {2 − r/κ}(j−1)/2 for j ≥ 0, and
as := (2s− 2)!!/{(2s− 1)!!s}． the tth power of θ is given by

θ2t =

z/2∑
q=t

Aq(z, t){r/κ(2− r/κ)}q +O(κ−(z+2)/2), 0 ≤ θ < π/2, (A.1)
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where

Aq(z, t) :=
∑

∑z/2
s=1 ts=t,

∑z/2
s sts=q

t!

t1!t2! · · · tz/2!

z/2∏
l=1

atll . (A.2)

Therefore, α2t(Kκ) for even 2t ≤ z ≤ p+ 4 is given by

α2t(Kκ) = 2C−1
κ (L)κ−1/2

z/2∑
q=t

z/2−q∑
m=0

κ−(q+m)Aq(z, t)(m!)−1g
(m)
2q (0)µ2(q+m)(L) +O(κ−(z+2)/2) (A.3)

If Kκ is a pth-order kernel, then (A.3) is reduced to

α2t(Kκ) = bp,2tµ
−1
0 (L)µp(L)κ

−p/2 +O(κ−(p+2)/2) 0 < j ≤ p, (A.4)

where，

bp,2t = 21/2
p/2∑
q=t

Aq(p, t)({p/2− q}!)−1g
(p/2−q)
2q (0).

Especially, the term b2,2 is 2. It follows from (A.3) that

αp+2(Kκ) = O(κ−(p+2)/2). (A.5)

Lemma A. 3. The term R(K(θ)θt) is equivalent to

R(K(θ)θt) := κ−(2t−1)/2[d2t(L) + o(1)],

where d2t(L) := 2−1µ−2
0 (L)δ2t(L) and d(L) := d0(L).

Appendix B

We will derive the conditional expectation γi. If t is odd, then, we obtain that the term
∫ π
−π γ(y)y

tdy =

0, because the function γ(y) is symmetry. By the binormal theorem,
∫ π
−π γ(y)y

2tdy is reduced to∫ π

−π
γ(y)y2tdy =

∫
Kκ(w)

∫
Kκ(s)(s− w)2tdwds− 2α2t(Kκ)

=

2t∑
m=0

(−1)m2tCmαm(Kκ)α2t−m(Kκ)− 2α2t(Kκ). (B.1)

Recalling that the kernel Kκ is second-order, by combining (B.1), (A.4), and (A.5), it is derived
that

∫ π

−π
γ(y)y2tdy =


−1 t = 0,

0 t = 1,

24µ−2
0 (L)µ22(L)κ

−2 +O(κ−3) t = 2,

O(κ−3) t = 3.

(B.2)
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noting γ(y) is a symmetric function, from (B.2), the conditional expectation γi is given by

γi =

∫ π

−π
γ(Θi − θj)f(θj)dθj

=

∫ π

−π
γ(y)f(Θi + y)dy

=

2∑
t=0

f (2t)(Θi)

(2t)!

∫ π

−π
γ(y)y2tdy +O

(∫
γ(y)y6dy

)
= −f(Θi) + f (4)(Θi)µ

−2
0 (L)µ22(L)κ

−2 +O(κ−3).

Appendix C

We derive each term of the variance Varf [CV(κ)]. We present the expectation Ef [γ
2
ij ] as

Ef [γ
2
ij ] =

∫ π

−π

∫ π

−π
γ2(θi − θj)f(θi)f(θj)dθidθj

=

∫ π

−π
f(θj)

∫ π

−π
γ2(u)f(θj + u)dudθj

=

∫
f(θj)

∫ π

−π
γ2(u)[f(θj) +O(u2)]dudθj

= R(f)R(γ) +O(R(γ(y)y) (C.1)

We produce the following lemma regarding R(γ(y)yt).

Lemma C. 1. We set Q2t(L) :=
∫∞
−∞

{
2−1µ−2

0 (L)η(z) − 21/2µ−1
0 (L)L(z2/2)

}2

z2tdz. Then, the

term R(γ(y)yt) is given by

R(γ(y)y)t = κ−(2t−1)/2[Q2t(L) + o(1)] t = 0, 1.

Proof. Let y = κ−1/2z. Then, Applying cos(κ−1/2z) = 1− z2/(2κ) +O(κ−2), the Taylor expansion
of Lκ(κ

−1/2z) is given by

Lκ(κ
−1/2z) = L(κ[1− {1− z2/(2κ) +O(κ−2)}])

= L(z2/2) +O(κ−1). (C.2)

It follows from (C.2) that∫ π

−π
Lκ(w)Lκ(w + κ−1/2z)dw =

∫ κ1/2π

−κ1/2π
Lκ(κ

−1/2t)Lκ(κ
−1/2(t+ z))κ−1/2dt

= κ−1/2

∫ κ1/2π

−κ1/2π
L(t2/2)L((t+ z)2/2)dt+O(κ−3/2)

= κ−1/2[η(z) + o(1)]. (C.3)
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We put Qκ1/2,2t(L) :=
∫ κ1/2π
−κ1/2π

{
2−1µ−2

0 (L)η(z) − 21/2µ−1
0 (L)L(z2/2)

}2

z2tdz. Then it holds from

(b) and (e) that Qκ1/2,2t(L) = Q2t(L) + o(1) for t = 0, 1. By combining (C.3) and Lemma A.1, the
term R(γ(y)yt) is given by

R(γ(y)yt) =

∫ π

−π

{∫ π

−π
Kκ(w)Kκ(w + y)dw − 2Kκ(y)

}2

y2tdy

=

∫ κ1/2π

−κ1/2π

{∫ π

−π
Kκ(w)Kκ(w + κ−1/2z)dw − 2Kκ(κ

−1/2z)

}2

(κ−1/2z)2tκ−1/2dz

=

∫ κ1/2π

−κ1/2π

{
C−2
κ (L)

∫ π

−π
Lκ(w)Lκ(w + κ−1/2z)dw − 2Kκ(κ

−1/2z)

}2

(κ−1/2z)2tκ−1/2dz

= κ−(2t+1)/2

∫ κ1/2π

−κ1/2π

{
C−2
κ (L)κ−1/2[η(z) + o(1)]− 2C−1

κ (L)[L(z2/2) +O(κ−1)]
}2
z2tdz

= κ−(2t+1)/2

∫ κ1/2π

−κ1/2π

{
(κ−1/221/2µ0(L) +O(κ−3/2))−2κ−1/2[η(z) + o(1)]

− 2(κ−1/221/2µ0(L) +O(κ−3/2))−1[L(z2/2) +O(κ−1)]

}2

z2tdz

= κ−(2t+1)/2

∫ κ1/2π

−κ1/2π

[
κ1/2

{
2−1µ−2

0 (L)η(z)− 21/2µ−1
0 (L)L(z2/2) + o(1)

}]2
z2tdz

= κ−(2t−1)/2 [Qκ,2t(L) + o(1)]

= κ−(2t−1)/2[Q2t(L) + o(1)].

Noting that Q0(L) = Q(L), from combining (C.1) and Lemma C.1, the expectation Ef [γ
2
ij ] is

given by

Ef [γ
2
ij ] = κ1/2[Q(L)R(f) + o(1)]. (C.4)

From combining (3.7) and (C.4), it follows that Var[γij ] is equivalent to (3.9).
Noting that γi =

∫ π
−π γ(θi − θj)f(θj)dθj , then, from (3.6) we derive Ef [γijγik]. That is,

Ef [γijγik] =

∫ π

−π

∫ π

−π

∫ π

−π
γ(θi − θj)γ(θi − θk)f(θi)f(θj)f(θk)dθidθjdθk

=

∫ π

−π
f(θi)

[∫ π

−π
γ(θi − θj)f(θj)dθj

]2
dθi

= R(f3/2)− 2R((f (4))1/2f)µ−2
0 (L)µ22(L)κ

−2 + o(κ−2). (C.5)

By combining (3.7) and (C.5), we obtain that Covf [γij , γik] is equivalent to (3.11).
From (3.7), we derive that Ef [γijf(Θi)] is given by

Ef [γijf(Θi)] =

∫ π

−π

∫ π

−π
γ(θi − θj)f(θi)f(θj)f(θi)dθidθj

= −R(f3/2) +R((f (4))1/2f)µ−2
0 (L)µ22(L)κ

−2 + o(κ−2). (C.6)
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From combining (3.7) and (C.6), we derive that Covf [γij , f(Θi)] is given by (3.12).
The variance Varf [f(Θi)] is equivalent to

Varf [f(Θi)] = E[f2(Θi)]− E[f(Θi)]
2

= R(f3/2)−R(f)2

= I3.

Appendix D

we derive the expectation Ef [U
2m
ij ]. That is,

Ef [U
2m
ij ] =

∫ π

−π

∫ π

−π
T (4)
g (θi − θj)

2mf(θi)f(θj)dθidθj

=

∫ π

−π
f(θj)

∫ π

−π
T (4)
g (u)2mf(θj + u)dudθj

=

∫ π

−π
f(θj)

∫ π

−π
T (4)
g (u)2m[f(θj) +O(u2)]dudθj

= ψ0R({T (4)}2mg ) +O(R({T (4)
g (u)}2mu) (D.1)

Lemma D. 1. The term R({T (4)
g (θ)}mθt) is given by

R({T (4)
g (θ)}mθt) = g(10m−2t−1)/2 {Gm,t(S4) + o(1)} , (D.2)

for t = 0, 1 and m = 0, 1.

Proof. The Taylor expansions of cos(g−1/2z) and sin g−1/2z are reduced to

cos(g−1/2z) = 1− z2/(2g) +O(g−2), (D.3)

and,

sin(g−1/2z) = g−1/2z +O(g−3/2), (D.4)

respectively. From considering (3.20), (C.2), (D.3), and (D.4), the approximation of S
(4)
g (g−1/2z) is

given by

S(4)
g (g−1/2z) = g2{S(2)(z2/2) + 6z2S(3)(z2/2) + z4S(4)(z2/2) + o(1)}

= g2{S4(z2/2) + o(1)}. (D.5)

We set δg1/2,t(S
m
4 ) :=

∫ g1/2π

−g1/2π
S2m
4 (z2/2)z2tdz. Then, it holds from (g) that δg1/2,t(S

m
4 ) = δt(S

m
4 ) +

o(1) for t = 0, 1, and m = 1, 2. By combining Lemma A.3 and (D.5), The term R({T (4)
g (θ)}mθt) is
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reduced to

R({T (4)
g (θ)}mθt) = C−2m

g (S)

∫ π

−π

{
S(4)
g (θ)mθt

}2
dθ

= C−2m
g (S)

∫ g1/2π

−g1/2π

{
S(4)
g (g−1/2z)m(g−1/2z)t

}2
g−1/2dz

= C−2m
g (S)g−(2t+1)/2

∫ g1/2π

−g1/2π
[g2{S4(z2/2) + o(1)}]2mz2tdz

= {21/2µ−1
0 (S)g−1/2 +O(g−(p+1)/2)}−2mg(8m−2t+1)/2

{
δg1/2,t(S

m
4 ) + o(1)

}
= 2−mµ2m0 (S)g(10m−2t−1)/2 {δt(Sm

4 ) + o(1)}
= g(10m−2t−1)/2 {Gm,t(S4) + o(1)} .

From combining (D.1), and Lemma D.1, the expectation Ef [U
2m
ij ] is given by

Ef [U
2m
ij ] = g(10m−1)/2[ψ0Gm,0(S4) + o(1)]. (D.6)

It follows from (3.26) that

Ef [U
2
i ] = Ef [{f (4)(Θi) + o(1)}2]

= Ef [f
(4)(Θi)

2] + o(1).

Appendix E

We calculate d
dκγ(yij). We derive

d

dκ
Lκ(w)Lκ(w + y) = L′

κ(w)Lκ(w + y){1− cos(w)}+ Lκ(w)L
′
κ(w + y){1− cos(w + y)}. (E.1)

We set d
dκCκ(L) = C ′

κ(L) and αt(ϕκ) :=
∫ π
−π ϕκ(y)y

tdy . It follows that

κC−1
κ (L)C ′

κ(L) = κC−1
κ (L)

∫ π

−π

d

dκ
Lκ(θ)dθ

= α0(ϕκ) (E.2)

We provide the following lemma regarding αt(ϕκ)

Lemma E. 1. The term ακ(ϕκ) is given by

αt(ϕκ) =


−1

2 − 3
8µ

−1
0 (L)µ2(L)κ

−1 +O(κ−2) t = 0,

−3µ−1
0 (L)µ2(L)κ

−1 +O(κ−2) t = 2,

24µ−2
0 (L)µ22(L)κ

−2 = O(κ−2) t = 4.
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Proof. From (b), the partial integration of µκ,l(L
′) :=

∫ κ
0 L(r)r

(l−1)/2dr for l ≤ 4 is to

µκ,l(L
′) = [L(r)r(l−1)/2]κ0 −

l − 1

2

∫ κ

0
L(r)r(l−3)/2dr

= − l − 1

2
µκ,l−2(L) +O(κ−3). (E.3)

The term α2t(ϕκ) is divided into the following two terms. That is,

α2t(ϕκ) = 2

∫ π/2

0
ϕκ(θ)θ

2tdθ + 2

∫ π

π/2
ϕκ(θ)θ

2tdθ. (E.4)

Recalling that we chose the second-order kernel for LSCV, the second term of (E.4) is ignored from
combining (d), (E.3), and lemma A.1. That is,

2

∫ π

π/2
ϕκ(θ)θ

2tdθ ≤ 2π2t
∫ π

π/2
ϕκ(θ)dθ

≤ 2π2tC−1
κ (L)

∫ π

π/2
L′(κ{1− cos(θ)})κ{1− cos(θ)}dθ

= 2π2tC−1
κ (L)

∫ 2κ

κ
L′(r)r{rκ(2− r/κ)}−1/2dr

= 2π2tC−1
κ (L)κ−1/2

∫ 2κ

κ
L′(r)r1/2dr{2−1/2 +O(κ−1)}

= O(κ−3). (E.5)

By considering (d), (E.3), and (E.4),we derive the terms α0(ϕκ), α2(ϕκ), and α4(ϕκ). That is,

α0(ϕκ) = 2

∫ π/2

0
ϕκ(θ)dθ +O(κ−3)

= 2C−1
κ (L)

∫ κ

0
L′(r)r{rκ(2− rκ)}−1/2dr +O(κ−3)

= 2C−1
κ (L)κ−1/2

∫ κ

0
L′(r)r1/2[2−1/2 − 2−5/2r/κ+O(κ−2)]dr +O(κ−3)

= 2C−1
κ (L)κ−1/2[2−1/2µ2,κ(L

′)− 2−5/2κ−1µ4,κ(L
′) +O(κ−2)] +O(κ−3)

= −1

2
− 3

8
µ−1
0 (L)µ2(L)κ

−1 +O(κ−2), (E.6)

α2(ϕκ) = 2C−1
κ (L)

∫ π/2

0
L′(κ{1− cos(θ)})κ{1− cos(θ)}θ2dθ +O(κ−3)

= 2C−1
κ (L)

∫ κ

0
L′(r)r[r/κ(2− r/κ) +O(κ−2)]{rκ(2− r/κ)}−1/2dr +O(κ−3)

= 2C−1
κ (L)κ−3/2

∫ κ

0
L′(r)r3/2(2− r/κ)1/2dr +O(κ−2)

= 2C−1
κ (L)κ−3/2µ4,κ(L

′){21/2 +O(κ−1)}+O(κ−2)

= 2µ−1
0 (L)(−3µ2(L)/2)κ

−1 +O(κ−2)

= −3µ−1
0 (L)µ2(L)κ

−1 +O(κ−2),
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and,

α4(ϕκ) = 2

∫ π/2

0
ϕκ(θ)θ

4dθ +O(κ−3)

= 2C−1
κ (L)

∫ κ

0
L′(r)r[{r/κ(2− r/κ)}2 +O(κ−3)]{rκ(2− r/κ)}−1/2dr +O(κ−3)

= O(κ−2). (E.7)

Then, by combining (E.1), (E.2), and Lemma E.1, it follows that

dγ(yij)

dκ
=

d

dκ

{
C−2
κ (L)

∫ π

−π
Lκ(w)Lκ(w + yij)dw − 2C−1

κ (L)Lκ(yij)

}
= −2C−3

κ (L)C ′
κ(L)

∫ π

−π
Lκ(w)Lκ(w + yij)dw

+ C−2
κ (L)

∫ π

−π

d

dκ
{Lκ(w)Lκ(w + yij)}dw

+ 2C−2
κ (L)C ′

κ(L)Lκ(yij)− 2C−1
κ (L)

d

dκ
Lκ(yij)

= κ−1

[
−2α0(ϕκ)

∫ π

−π
Kκ(w)Kκ(w + yij)dw

+

∫ π

−π
{ϕκ(w)Kκ(w + yij) +Kκ(w)ϕκ(w + yij)}dw

+ 2α0(ϕκ)Kκ(yij)− 2ϕκ(yij)

]
= κ−1

[∫ π

−π
Kκ(w)Kκ(w + yij)dw − 2Kκ(yij)

+Kκ(yij) +

∫ π

−π
{ϕκ(w)Kκ(w + yij) +Kκ(w)ϕκ(w + yij)}dw − 2ϕκ(yij)

+
3

4
µ−1
0 (L)µ2(L)κ

−1

{∫ π

−π
Kκ(w)Kκ(w + yij)dw −Kκ(yij)

}]
= κ−1[γ(yij) + ρ(yij) + 3/4µ−1

0 (L)µ2(L)κ
−1τ(yij)]

= κ−1/2Vij . (E.8)

We obtain the equation (4.5) from (E.8) and (4.4).

Appendix F

Let ρi := Ef [ρij |Θi] and τi := Ef [τij |Θi]. Then, The conditional expectation Vi is presented as the
following linear combination of the conditional expectations γi, ρi, and τi.

Vi = κ−1/2

[
γi + ρi +

3

4
µ−1
0 (L)µ2(L)κ

−1τi

]
. (F.1)

We present the following lemma regarding ρi.
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Lemma F. 1. The conditional expectation ρi is given by

ρi = f(Θi)− 3

[
f (2)(Θi)

4
+ f (4)(Θi)

]
µ−2
0 µ22(L)κ

−2 +O(κ−3)

(F.2)

Proof. The term α2t(ρ) =
∫ π
−π ρ(y)y

2tdy is given by

α2t(ρ) = α2t(Kκ)

+ κC−2
κ (L)

∫ π

−π

∫ π

−π
{ϕκ(w)Kκ(w + y) +Kκ(w)ϕκ(w + y)}y2tdwdy − 2α2t(ϕκ). (F.3)

The second term of (F.3) is reduced to∫ π

−π

∫ π

−π
{ϕκ(w)Kκ(w + y) +Kκ(w)ϕκ(w + y)}y2tdwdy

= 2

∫ π

−π

∫ π

−π
Kκ(w)ϕκ(s)}(s− w)2tdwdy

= 2

∫ π

−π

∫ π

−π
Kκ(w)ϕκ(s)

[
2t∑

m=0

(−1)m2tCmw
ms2t−m

]
dwds

= 2

2t∑
m=0

(−1)m2tCmαm(Kκ)α2t−m(ϕκ). (F.4)

It follows from (F.3) and (F.4) that

α0(ρ) = α0(Kκ) = 1, (F.5)

and

α2t(ρ) = α2t(Kκ) + 2
2t∑

m=1

(−1)m2tCmαm(Kκ)α2t−m(ϕκ) t ≥ 1. (F.6)

From combining Lemma A.2, Lemma E.1, and (F.6), it follows that

α2(ρ) = −3

2
µ−2
0 µ22(L)κ

−2 +O(κ−3), (F.7)

α4(ρ) = −72µ−2
0 µ22(L)κ

−2 +O(κ−3), (F.8)

and,

α6(ρ) = O(κ−3). (F.9)
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By combining (F.5), (F.7), (F.8) and (F.9), we obtain the conditional expectation ρi. That is,

ρi =

∫ π

−π
ρ(θj −Θi)f(θj)dθj

=

∫ π

−π
ρ(y)f(Θi + y)dy

=
2∑

t=0

f (2t)(Θi)

(2t)!
α2t(ρ) +O(α6(ρ))

= f(Θi)− 3

[
f (2)(Θi)

4
+ f (4)(Θi)

]
µ−2
0 µ22(L)κ

−2 +O(κ−3). (F.10)

We present the following lemma regarding τi.

Lemma F. 2. The conditional expectation τi is given by

τi = f (2)(Θi)µ
−1
0 µ2(L)κ

−1 +O(κ−2).

(F.11)

Proof. We set αt(τ) :=
∫ π
−π τ(y)y

tdy. Then, it follows that

α2t(τ) =
2t∑

m=0

(−1)m2tCmαm(Kκ)α2t−m(Kκ)− α2t(Kκ). (F.12)

From combining Lemma A. 2 and (F.12) It follows that the terms α0(τ), α2(τ) and α4(τ) are equal
to,

α0(τ) = 0, (F.13)

α2(τ) = 2µ−1
0 (L)µ2(L)κ

−1 +O(κ−1), (F.14)

and,

α4(τ) = O(κ−2), (F.15)

respectively. It is shown from (F.13), (F.14) and (F.15) that

τi =

∫ π

−π
τ(θj −Θi)f(θj)dθj

=

∫ π

−π
τ(y)f(Θi + y)dy

= f(Θi)α0(τ) +
f (2)(Θi)

2
α2(τ) +O(α4(τ))

= f (2)(Θi)µ
−1
0 (L)µ2(L)κ

−1 +O(κ−2).
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By combining (F.1),(3.6) Lemma F.1, and Lemma F.2, The conditional expectation Vi is reduced
to

Vi = κ−1/2

[
γi + ρi +

3

4
µ−1
0 (L)µ2(L)κ

−1τi

]
= −2f (4)(Θi)µ

−2
0 (L)µ22(L)κ

−5/2 + o(κ−5/2). (F.16)

The expectations of Vi and V
2
i are given by

Ef [Vi] = −2R(f ′′)µ−2
0 (L)µ22(L)κ

−5/2 + o(κ−5/2), (F.17)

and

Ef [V
2
i ] = 4[R(f (4)f1/2)]µ−4

0 (L)µ42(L)κ
−5 + o(κ−5), (F.18)

respectively. We obtain the variance of Xi from (F.17) and (F.18). That is,

Varf [Xi] = 4[R(f (4)f1/2)−R(f ′′)2]µ−4
0 (L)µ42(L)κ

−5 + o(κ−5). (F.19)

From (F.19), we show that the variance Varf [Xi] is finite. Thus, we obtain (4.7) from the central
limit theorem.

Appendix G

We derive the expectation Ef [V
2m
ij ]. That is,

Ef [V
2m
ij ] =

∫ π

−π

∫ π

−π
[κ−1/2{γ(θi − θj) + ρ(θi − θj) +O(κ−1)}]2mf(θi)f(θj)dθidθj

= κ−m

[∫ π

−π

∫ π

−π
{γ(θi − θj) + ρ(θi − θj)}2mf(θi)f(θj)dθidθj

]
{1 + o(1)}

= κ−m [R((γ + ρ)m)R(f) +O(R((γ + ρ)my))] . (G.1)

Lemma G. 1. The term R((γ + ρ)my)my) is given by

R((γ + ρ)m)my) = κ(2m−2t−1)/2[Mm,t(L) + o(1)]

Proof. We set

ψ(y) =

∫ π

−π
L′(κ{1− cos(w)})κ{1− cos(w)}L(κ{1− cos(w + y)})dw.

then, the term
∫ π
−π

d
dκ{Lκ(w)Lκ(w + y)}dw is reduced to

κ

∫ π

−π

d

dκ
{Lκ(w)Lκ(w + y)}dw = ψ(y) + ψ(−y). (G.2)
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We set λκ1/2(L) :=
∫ κ1/2π
−κ1/2π L

′(t2/2)L((t+ z)2/2)t2/2dt. Then, it holds that λκ1/2(L) = λ(L) + o(1)
from (f). Thus, it follows that

ψ(κ−1/2z) =

∫ κ1/2π

−κ1/2π
L′(κ{1− cos(κ−1/2t)})κ{1− cos(κ−1/2t)}L(κ{1− cos(κ−1/2(t+ z))})κ−1/2dt

= κ−1/2

[∫ κ1/2π

−κ1/2π
L((t+ z)2/2)L′(t2/2)t2/2dt+O(κ−1)

]
= κ−1/2

[
λκ1/2(z) +O(κ−1)

]
= κ−1/2

[
{λ(z) + o(1)}+O(κ−1)

]
= κ−1/2[λ(z) + o(1)] (G.3)

We set Mκ,m,t(L) :=
∫ κπ
−κπm(L)2mz2tdz. Then, it holds from combining (b), (e), and (f) that

Mκ,m,t(L) = Mm,t(L) + o(1). From considering this, (C.3), and (G.3), The term R({γ + ρ}myt) is
reduced to

R((γ + ρ)myt) =

∫ π

−π
{γ(y) + ρ(y)}2my2tdy

=

∫ κ1/2π

−κ1/2π

[
C−2
κ (L)

{∫ π

−π
Lκ(w)Lκ(w + κ−1/2z)dw + ψ(κ−1/2z) + ψ(−κ−1/2z)

}
− C−1

κ (L){Lκ(κ
−1/2z) + 2L′(κ{1− cos(κ−1/2z)})κ{1− cos(κ−1/2z)}}

]2m
(κ−1/2z)2tκ−1/2dz

= κ−(2t+1)/2

∫ κ1/2π

−κ1/2π

[
C−2
κ (L)κ−1/2 {η(z) + λ(z) + λ(−z) + o(1)}

− C−1
κ (L){L(z2/2) + L′(z2/2)z2 +O(κ−1)}

]2m
z2tdz

= κ−(2t+1)/2

∫ κ1/2π

−κ1/2π

[
κ1/2

{
η(z) + λ(z) + λ(−z)

2µ20(L)
− L(z2/2) + L′(z2/2)z2

21/2µ0(L)
+ o(1)

}]2m
z2tdz

= κ(2m−2t−1)/2[Mκ,m,t(L) + o(1)]

= κ(2m−2t−1)/2[Mm,t(L) + o(1)].

From combining (G.4), and Lemma G.1, it follows that

Ef [V
2m
ij ] = κ−1/2[Mm,0(L)R(f) + o(1)]. (G.4)

From (F.16), it follows that Vi = O(κ−5/2). Then, The expectation Ef [H
2m
ij ] is reduced to

Ef [H
2m
ij ] = Ef [{Vij − Vi − Vj + Ef [Vij ]}2m]

= Ef [V
2m
ij ]{1 + o(1)}

= κ−1/2[Mm,0(L)R(f) + o(1)]. (G.5)
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Noting that Vii is a constant, it follows that

Gij := E[HiiHij ]

= E[{Vii + Ef [Vi]− 2Vi}{Vij − Vi − Vj + Ef [Vi]}]
= 0− 2Ef [V

2
i ] + 2Ef [V

2
i ] + 2Ef [Vi]

2 − 2Ef [Vi]
2

= 0. (G.6)

From (G.5) and (G.6), it follows that the U-statistic Hij satisfies (4.3). That is,

E[G2
ij ] + n−1Ef [H

4
ij ]

Ef [H
2
ij ]

2
=
n−1[κ−1/2[M2,0(L)R(f) + o(1)]

[κ−1/2M1,0(L)R(f) + o(1)]2

= o(1). (G.7)

We obtain the asymptotic normality for (4.8) from (G.7).

Appendix-H

Let g−9/4Wij = Qij . By (3.31), the expectation Ef [Q
2
ij ] is given by

Ef [Q
2
ij ] = g−9/2Ef [W

2
ij ]

= G1,0(S4)ψ0 + o(1). (H.1)

From combining (3.26), (3.27) and Lemma D.1, it follows that

Ef [Q
4
ij ] = g−9Ef [W

4
ij ]

= g−9Ef [U
4
ij ]{1 + o(1)}

= g1/2{G2,0(S4)ψ0 + o(1)}. (H.2)

By combining Gij = 0, (H.1), and (H.2) It follows that that

E[G2
ij ] + n−1Ef [Q

4
ij ]

Ef [Q
2
ij ]

2
=

0 + n−1[G2,0(S4)ψ0g
1/2 + o(g1/2)]

[G1,0(S4)ψ0 + o(1)]2

= o(1). (H.3)

the d-generate U statistic Qij satisfies Lemma 1 by (H.3). Therefore, as n→ ∞, it holds that∑
i<j

Qij
d−→ N(0, n2G1,0(S4)ψ0/2). (H.4)

We obtain the asymptotic normality from (4.17) from (H.4).
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