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Abstract

We derive the asymptotic properties of the least squares cross-validation (LSCV) selector and
the direct plug-in rule (DPI) selector in the kernel density estimation for circular data. The DPI
selector has the convergence rate O(n~°/14), although the rate of the LSCV selector is O(n~1/10).
Our simulation shows that the DPI selector has a smaller variance and more stability than the
LSCV selector, even when n is not large enough. In other words, the DPI selector outperforms
the LSCV selector with

1 Introduction

Kernel density estimation is the standard nonparametric method for exploring the structure of
circular data that distributes on the circle. The structure of the kernel density estimator is largely
influenced by the value of the smoothing parameter. Therefore, the selection of the smoothing
parameter is an important problem in the practical analysis of circular data.

Automatic selectors of the smoothing parameter for circular data are proposed, and the practical
performances studied through the simulation. However, to our knowledge, no study has derived
theoretical properties for the selectors in the field of circular data analysis.

We will explore the least squares cross-validation (LSCV) selector proposed by [Hall et al.(1987)]
and the direct plug-in rule (DPI) selector proposed by [Di Marzio et al.(2011)]. The LSCV selector
has been commonly used in the circular data analysis because of the simple definition. A few
studies researched the properties of the DPI selector for circular data. However, in the studies on
selectors for real line data, [Wand and Jones (1994)] pointed out that the DPT selector has a better
performance than the LSCV selector with respect to the convergence rate to the optimal smoothing
parameter.

This paper derives theoretical properties of both the LSCV selector and the DPI selector
that include the asymptotic normality and the convergence rate: See [Hall and Marron(1987)],
[Scott and Terrell (1987)], and [Sheather and Jones (1991)] for previous studies regarding real line
data. The authors obtained the rates from the central limit theorem of a degenerate U-statistic
given by [Hall(1984)]. We demonstrate that the converge rate of the DPI selector is O(n~>/1*) and
that of the LSCV selector is O(n~1/10). Numerical experiments show that DPI is much more stable
than LSCV even when sample size n is not large enough.

*Graduate School of Human and Socio-Environmental Studies, Kanazawa University.
fSchool of Economics, Kanazawa University.



2 Properties of kernel density estimation

We give the definitions and the asymptotic properties of the kernel density estimators on the circle.
A kernel density estimator fy(6) of unknown density f based on a random sample O1,...,0,, is

defined as
_lf:;{ (60 — ©;)
- n z:1 K 1)

where K, (0) is a symmetric kernel function, and  is a concentration parameter that plays the
role of a smoothing parameter, and corresponds to k = h~ 2 for a general bandwidth h > 0. Our
loss function between fH and f is integrated squared error (ISE) given by ISE] fn : f A f,i
£(0)}2d6. The risk is mean integrated squared error (MISE) given by MISE|[f,] := E; [ISE[fK]].
We now employ a kernel function for circular data that is proposed by [Hall et al.(1987)].

Definition 1. (Kernel function)
A function K,(0) : [—m,m) — R is said to be a kernel function. Let K, (f) denote K,(0) :=
C;Y(L)L.(0), where

K

L, (0) :== L(k{1 — cos(0)}) (2.1)
and Cy( f L, ( . We define the | th moment of L as
(L) i= [ LD ar
0

where [ > 0 is even and 7 = k{1 —cos(6)}. The main term L satisfies the following seven conditions:

(a) The fourth derivative L*)(r) := d® L(r)/dr* is continuous,

(b) If r is large, then, L(r)r(pﬂ)/2 = O(r—(P+4)/2),

(¢) The term 6o (L) := [0 L*(2?/2)z*'dz has bounded for t =0, 1.

(d) The moments (L) has bounded for 0 <1 < p-+4, and (L) = pe (L) +O(k~P+0)/2)  where
:uf-il f L(r (l D/2qr.

(e) 1m0 n(z)]z\?’/Q = o(1), where n(z) := [0 L(t*/2)L((t + 2)*/2)dL.

(f) Hmypy o0 A(2)]2[32 = o(1 ) where A(L) := [ L'(t?/2)L((t + 2)?/2)t?/2dt is bounded,

g) The term 6,(S})") := 22/2)2%'dz is bounded for t = 1,2 and m = 1,2, where

(8) 1)

S4(22/2) =35 (2 2/2) 6225(3( 2/2) + 225" (22/2).

The conditions (a), (c), and (d) are required to derive MISE|[f,]; we can replace the condition
(a) on the assumption that L’ is continuous. We use the conditions (a)—(f) to prove the theoretical
properties regarding the LSCV selector, and also need the conditions (a), (c), (d), and (g) to prove
the theoretical properties regarding the DPI selector.

The kernel consisting of L(r) = e~ " satisfies all the conditions of Definition 1, and it is equivalent
to the von Mises (VM) kernel such as L (f) = exp[—r{1 — cos(0)}]. [Hall et al.(1987)] suggested
that smooth and rapidly varying kernels of type (2.1) are asymptotically equivalent to the kernel of
L(r)y=e™".

We now define the pth-order kernel function.



Definition 2. (p th-order kernel function)
Let p > 2 be even. We say that K, (0) is a pth-order kernel, if,

/’LO(L)%()? /'Ll(L):()? l:2747 7p_27 and Ml(L)#O l:p

Let R(g(0)6") := ["_g*(#)6*df. Then, [Tsuruta and Sagae (2016)] derived the following asymp-
totic MISE by combining Lemma A.1-A.3 in Appendix A.

Theorem 1. Assume that the following conditions hold:
(i) K = k(n) and lim,_,~ K(n) = 00,
(i) limy,_yee n~'kY2(n) =0,
(iii) f is p 4 2th differentiable and f(*) is square-integrable for s = 1,2,--- ,p.
Then, employing a pth-order kernel, MISE is given by

. 2 p/2 (2t)
MISE|[f,] = Z gg R(Z %) k7P + 0 RY2d(L) + o(k7P 4+ n k). (2.2)
0 t=1 :

The details of the constants of by 9; and d(L) are presented in Appendix A. The first two terms on

the left side of (2.2) are referred to AMISE[ fx]. When we employ a second-order kernel, we show
that AMISE|[f,] is equivalent to

AMISE|f,] = Z?}Ei;}z( ME"2 4+ n kM 24(L), (2.3)

where by 2 = 2, and the minimizer s, of (2.3) is given by
ke = B(L)R(f®))*/5n?/5, (2.4)

where A(L) = [4u3(L)/{k3(L)d(L) /5.

The sketch of the proof is presented in Appendix-D in Tsuruta and Sagae (2016).

Higher-order kernels for p > 4 improve the MISE, but sacrifice the non-negative value so that
the lower moments are 0. Therefore, we believe that most researchers prefer second-order kernels
in practical analysis, because they are non-negative kernels. This paper focuses on the selectors of
K+, which is the optimal smoothing parameter for second-order kernel density estimators.

3 Bandwidth selectors

3.1 Least squares cross-validation

The motivation of the LSCV selector comes from the minimization of ISE[f.] — R(f). The LSCV
selector Koy is defined as the minimizer of the CV function given by

CV(w) = R() ~ = 3 F4(00), (3.1)
=1



where f_i(0;) = (n— 1)} ZZ&]‘ K..(6 — ©;). Hereafter, we use only the second-order kernels with
respect to LSCV. If n is sufficiently large, then the equation (3.1) is replaced by

CV(k) := R + % Z'y(yij), (3.2)

n —
1<)

where y;; == 0; — ©; and v(y) = [ Ku(w)Kg(w + y)dy — 2K.(y). We apply the augmented
cross-validation CV (k) given by

CV(r) i= CV() + = 3 £(8) = R(S),

for theoretical analysis. Then, we obtain the variance of CV (k) that has a faster order than that
of CV(k), and is similar to that derived by [Scott and Terrell (1987)]: they indicated that the aug-
mented cross-validation for the real line data provides a smaller variance. We derive the expectation
and variance of CV (k) as the following theorem.

Theorem 2. Assume that the three conditions of Theorem 1, R(f®) f1/2) < 0o, and R((f®)1/2f) <
0.
Then, it follows that
E;[CV (k)] = AMISE[f,] + o(k2 + n~x1/?), (3.3)
and
— 2
Var[CV (k)] = ﬁﬁl/zQ(L)R(f) +o(n 262 £ nlk72), (3.4)

2
where Q(L) := f_oooo{2_1u52(l})77(z) — 21/2u51(L)L(z2/2)} dz.

Proof. We set v(y;j) = 7i; to ease of notation. First, we calculate the expectation of CV(k), which
is given by

B0V ()] = T 2 S )+ 23 mlr©0] - RO, (35)

n —
1<)
We set v; = Ef[7;|©;]. Then, the conditional expectation +; is given by
7= —1(0:) + fY(©)ug*(L)3(L)r~2 + O(x ). (3.6)
The details are presented in Appendix B. It follows from (3.6) that

Ef[vij] = Ef[vi]
= —R(f) + R(f®) g *(L)u5(L)s 2 + O(k77). (3.7)

By considering Lemma A.3, (3.7), and E¢[f(0;)] = R(f), we obtain that Ef[CV(k)] is equivalent
to (3.3).



We calculate the variance of CV (k). That is,
— 2 4 4 8
Var¢[CV (k)] ~ ﬁ\farf [vi5] + ﬁVarf [f(©:)] + ECovf [Vij» Yir] + ECovf [vij. f(©5)], (3.8)

where j # k. Let I := R((f®")Y2f), I := R(f®)R(f), and Is. = R(f%/?) — R(f)?. Each term of
the right side regarding (3.8) are given by

Var[y;] = 2 [Q(L)R(f) + o(1)], (3.9)
Vary[f(6;)] = I3, (3.10)
Covslij, vir] = Is — 2{ Iy — I}pug > (L)p3 (L)% + o(k2), (3.11)

and
Covylyij, f(©)] = =I5 + {1y = I}ug *(L)p3 (L)% + o(k™2). (3.12)
The details of (3.9)-(3.10) are presented in Appendix C. By considering (3.8)— (3.10), we obtain
that Var[CV (k)] is equivalent to (3.4). O O

With a strategy similar to [Scott and Terrell (1987)], Theorem 2 leads to that the LSCV selector
Koy is consistent with the minimizer x..

Corollary 1. Let ~cy := arg min CV(k) for a < b. Then, it holds that

KE(ak+,bkx)
~ p
Rov/ks — 1,

as n — oQ.

Proof. We set ¢ := kcy/k«. Then, it is derived from combining Theorem 1 and Theorem 2 that

AMISE(ck, ) /MISE(ck,) <1, (3.13)
CV(cky) /MISE(cky) =2 1, (3.14)
and
1 4c1/?
AMISE(cky)/AMISE(k,) = t2 + F (3.15)

The equation (3.15) is the convex function such as the minimum at ¢ = 1. Thus, if ¢ # 1 and n is
large, then it follows from combining (3.13) and (3.15) that

MISE(cky) > MISE(kx). (3.16)

Suppose that ¢ does not converge to 1. Recall that it is necessary that CV(ck,) < CV(k) for
any k, because £cy is the minimizer of CV (k). Also, if n is large, then it is shown that CV(k) is
the convex function such as the minimum at k = ckx, because we obtain that CV (k) approximates
AMISE(k) from Theorem 2. Therefore, it follows that

P(CV(cks) < CV(ky)) — 1, (3.17)

as n — oo. From (3.14) and (3.17), then it holds that
MISE(cky) < MISE(k4), (3.18)
as n — oo. By contradiction between (3.16) and (3.18), this completes the proof. O O



3.2 Direct plug-in rule
Note that ¢, := [ FT(0)£(0)df and R(f")) = (=1)"4g,. We now define the DPI estimator as

fip1 = B(L)Pa(g)?>n*®,

where

n n

dalg) :=n"t ) fN(©) =02 Y TV - 9)), (3.19)
=1

i=1 j=1

where Tg(4) 0) = C’;l(L)SgL) (), and g and T,(0) := C;;1(5)S,(#) are a smoothing parameter and
a kernel that is possibly different from x and K, respectively. The main term 5554) (0) is given by

S(0) == —gcos(8) S (0) + g*{—4sin*() + 3cos®(6)}S{2(0)

+ 6g° cos(0) sin®(0)S{P (0) + g* sin*(6) LY (0). (3.20)

The asymptotic properties for mean square error (MSE) of 1/34 play an important role in showing
the theoretical properties of Apr in the next section. We provide the bias and the variance of 14(g)
in the following theorem.

Theorem 3. Assume that the following conditions hold:
(i) g:=g(n), lim, .o g(n) = 0o, and lim,, oo n2¢%?(n) = 0,
(ii) f is (4 + p)th differentiable, 1419, is bounded for t = 1,2,...,p/2.

Then, when we employ a pth-order kernel, the bias is given by

Bias;[1h4(g)] = Ablass[1ha(g)] + O(n~g*? 4 g~ P+2)/2), (3.21)
where,
/2
o 39°/28(0) | 1p(S) "~ bpatharar
Abias = + 2 b, p/27
1000 = S5 o) 2= @ !
and the variance is given by
. 4 2G10(S 9/2
Vargfia(9)] = Vrlf0(@0)] + ZXENTT oot 2oy (32)

where G 1(S4) := 27 ug 2™ (S)6:(ST).

Proof. Let U;; = Tg(4)(®,; — 0;), andU; = E[U;;|0;]. The expectation of @4(9) is given by

Ef[ha(g)] = n ' T{V(0) + 2072 > B (U], (3.23)
1<j



It follows from (3.20) that
4 21 q(2 -1
SD(0) = 3¢°[S$(0) + O™ ). (3.24)

By combining (3.24) and Lemma A.1, we obtain that the first term of the right side of (3.23) is
equal to

39°/2[S57(0) + O(g1)]

“ITW(0) = 3.25
n g ( ) 21/2/1/0(5’)77/ ( )
It follows from Lemma A. 2 that
U = / TS0 (05 — ©4) f(0;)do;
2/ Ty(0; — ©:)f Y (0;)d8
P/2 p(4yo1)
U (e;
= (%)(,)azt(Tg) + Olapes(Ty))
t=0 '
p/2 (4+2t)
= fD(00) + 1 (S)up(S)gP/? Z p’%f O, O(g~#+2)72), (3.26)
The expectation E¢[Us;] of (3.23) is given by the expectation of (3.26) over ©;
Ef[Uij] = E¢[Ui]
p/2
=it ()7 3 AL L Oy 0421), (3.27)

We obtain the bias (3.21) from combining (3.23), (3.25) and (3.27).

We derive the variance of ¥4(g). We set Wy; := U;j — U; — U; + E¢[U;] and Z; := U; — E¢[U].
Then, we obtain that Ef[W;;] = 0, E¢[Z;] = 0 and Cov[Z;W;;] = 0. By using W;; and Z;. we
present 14(g) — Ef[ta(g)] as

~ ~

Ya(g) — Eg[ta(g)]

= Z Wi (3.28)

1<j

Thus, the variance of 1/34 is equal to

Vary[(g)] = Ey H n_l ZZ+ QZWU}]

1<)

— 1
= An ZVarf + i ZVarf Wil (3.29)

1<j



By combining (3.26) and (3.27), Var¢[Z;] is reduced to

Vary([Zi] = E[U}] — E[U;]?
_ [ FO(0:)2 £(0:)d6; — [ i F96;)£(6;)db; 2+0(1)

= Var[f®(©,)] + o(1). (3.30)
By considering (3.27), E¢[U3] = ¢%2[G1,0(S4)¢0 + 0(1)], and E[U?] = E[U;]* = O(1) (The details
of Ef[UiZj] and E[U?] are presented in Appendix D.), we obtain Var[W;;]. That is,
Var[Wij] = Ef[Uj] — 2E¢[U7] + E[U:])*
= ¢"2[G1.0(Sa)wo + o(1)]. (3.31)
We obtain (3.22) from combining (3.29) (3.30), and (3.31). O O

Theorem 3 easily shows the optimal MSE.

Corollary 2. Select the optimal smoothing parameter g, > 0 such as that Abiasy [1/}(9)] = 0. Then,
g« 1s given by

g = W(S)n?/(PF5) (3.32)

2/(p+5)

where W(S) = |—{21/215(8) X0 [t/ O1H{3S 0}
bias can be ignored by Biasfc [1ha(g)] = O(n~@+D/(@+5))  In other words, The convergence rate of

the minimum MSE depends on only the variance Vary [1/;4(g)]. If p < 4, then, inf,~¢ MSE[q/A)T(g)] is
equivalent to the second term of the right side of (3.22), if p = 4, then, it is equivalent to the first
two terms of that, otherwise, it is equivalent to only the first term of that. Thus, infg~¢ MSE[¢4(Q)]
is presented as

The remaining squared

O(n7(2p+1)/(p+5)) p < 4’

g9>0 O(n™h) p =>4

inf MSE[{4(g)] = {

Corollary 2 indicates that employing a higher-order kernel for p > 4 achieves the parametric
rate of O(n~!). However, it is greatly difficult to inspect whichever higher-order kernels satisfy
the positive condition of g., because the sign of g, depends on T, and the sum of some unknown
functionals 9,; we may need to know the unknown density f to know the sign of g,.

If T, is a second-order kernel, then the sign of g, depends on only Tj. Hence, we always obtain
a positive g, by applying the suitable kernels such that p5/5(0) is positive, because 1 = —R(f®)).
We recommend employing suitable second-order kernels such as a VM kernel to estimate 4.

We obtain g, = [cign]?/7 for the suitable second-order kernels, where ¢ = —2*1/2/12(5')/(65’;2) (0)).
Estimating g, also requires estimating an unknown functional ¢s. We provide the simplest estima-
tor of g by assuming that a true density is a VM density fyam(0;7) := (2mlo(7) ! exp{r cos(6)},
where I,(7) denotes the modified Bessel function of the first kind and the order p, and 7 is the
concentration parameter. The estimator of g is given by

pM = —[4711(27) + 307215(27) + 1573 [3(27)] /{16713 (7)}.

We propose the easy and practical algorithm for direct plug-in rule, called for “One-step direct
plug-in rule”.



Algorithm 1. One-step direct plug-in rule conducts the following procedure:

Step.1 Calculate ML estimator 7 and ’lj)éf M
Step.2 Give § := [cqﬂé/Mn]Qﬁ as the estimator of g,.

Step.3 Give ipr = B(L)1a(§)%/>n?/5.

4 Theoretical properties for the selectors

From theoretical perspective, we must inspect whether the DPI selector outperforms the LSCV
selector. The theoretical performance for the selector 4 is measured by the convergence rate of the
relative error: k/k. — 1. The rate is derived through the asymptotically normal distribution:

n®(k/ke — 1) 4N (0702) ,
where 02 < oo depends only on f and L, but not on n. The asymptotic distribution of LSCV and
DPI are shown in Theorem 4 and Theorem 5, respectively.

Theorem 4. Assume that all the conditions of Theorem 1 and Theorem 2 hold: then, it holds that
n 0 (ray ke — 1) 5 N (0,02y) (4.1)

asn — oo, where 02y, 1= 50d~2(L)Mio(L)R(f)B~YA(L)R(f")~1/°, and My (L) == [°2 m(L)*™z%dm,
where

m(L) =27 g (D) {n(z) + M=) + A(=2)} = 272 (D{L(=%/2) + L(%/2)="}.

Theorem 5. Assume that the conditions of Theorem 3 hold. Then, when we employ the suitable
second-order kernel, and it holds that

n® M (ipr ke — 1) -5 N (0,02y) , (4.2)

as n — oo, where o, = 8W2(8)G1 o(S4)vhoth; 2/25.

Theorems 4 and 5 are proved by the asymptotic normality of a degenerate U-statistic given by
[Hall(1984)]. We give the definition of a degenerate U-statistic. A U-statistic is defined as U, :=
ZKj H;j, where H;; := H(©;,0;) and H;; is symmetric and E¢[H;;] = 0. Let the degenerate U-
statistic be the U-statistic satisfying E¢[H;;|0;] = 0. The following lemma describes the asymptotic
normality of a degenerate U-statistic.

Lemma 1 ([Hall(1984)] ). Assume that H;; is symmetric, and Ef[H;;|©;] = 0, almost surely and
Ef[HZGZ] < oo for each n. We set G;; := E[H;; Hy;). if
E[G}] +n'Ef[H}]

0, 4.3
Es[H3)? - (43)

as n — oo, then, it holds that

S° =y -5 N(0,%E[HE]/2).

1<i<j<n



We now prove Theorem 4.
Proof of Theorem 4. If n is large, it follows from Lemma A.3 that
d( 1/2
CV(k) ~ + o Z’y Yij)- (4.4)
1<J

The derivative of (4.4) is given by

LV 2$j%+vﬂlﬂ§jmﬁ (1.5
where
Vig = 5720 (i) + plyig) + 3/4g (L) (L)~ 7 (yig)],
Suli) == KO (D) 5 Liluiy),
plai) 1= Kl + | (0u()Buw 1) + Kolw)o + 3} = 2013,
and

i) = | Ew)Knlw + yig)dw — Klysy).

—Tr

The details are presented in Appendix E. The selector kcy satisfies that dCV(k)/dk |x=ic,= 0.
This is equivalent to

) Vi = —d(L)/(2n). (4.6)

Note that V; := E¢[V;;|0;]. Then, we set Hy; := V;; — V; = V; + E¢[V;] and X; :=V; — E¢[V;]. Then,
we rewrite 2n 2 >oiciiVij — Ep[Visl} as

2072 Vij— 2072 BVl ~ 20 ZX +2n72>  Hy,

1<j 1<J 1<j

where 272", j Hij is the degenerate U-statistic. We obtain the asymptotic normality for 273X
from the standard central limit theorem (CLT). That is,

% S xi -5 N(0,Bn w0, (4.7)

where, B := 16u5(L){R(fW fY/2) — R(f")?}/{ut(L)}. The details are presented in Appendix F.

We obtain the asymptotic normality for 2n =2 Doic ; Hij from Lemma 1. that is,

% S Hi; % N(0,207 2672 Mo (D)R(f)). (4.8)

i<j

10



See Appendix-G for details. It is derived from combining (4.7) and (4.8) that the asymptotically

normal for 2n =2 dicy Vij is

% > VN (—2R<f”>u52<L>u§<L>Kr5/2, Bn 'k + 2n’2H’1/2M1,o(L)R(f)) . (49)
1<J

We take k = Acy in (4.9). Then, we replace ¢y in the variance to k. by Corollary 1. Thus, it
follows from combining (4.6) and (4.9) that

—2R(f") s (D)3 (D) gy L N (—d;i), Bn k1% +2n %k 1/2M170(L)R(f)>. (4.10)

the first term for the variance of (4.10) is ignored, because the convergence rate of the first term is
O(n~?), and that of the second term is O(n~'Y/%) by using k. = O(n*°®). From (2.4), we obtain

that R(f")u3(L)n/(d(L)uo(L)) = K2, Thus, (4.10) is reduced to
(rev/r) ™% <5 N (1, 8d(L)Mio(DR(f)r?). (4.11)

Let g(z) = 275/2. Then, it follows that g(1)=1 and {¢(1)}? = 25/4. We obtain the asymptotic
normality for Koy /k« by applying the delta method to (4.11). That is,

fov ke~ N (1, 50d(L) "2 M1o(L)R(f)B(L) V2 R( f”)—1/5n—1/5.) . (4.12)

Theorem 4 completes the proof from (4.12). O O

Next, we prove Theorem 5.

Proof of Theorem 5. The Taylor expansion kp; = /%pl(z@;(g*)) is given by

ip1(Pa(gs)) = 5(L)”2/5¢i/5 + %ﬁ(L)n”%Z?’“(%(g*) —14)
= kiu[l + 2(a(gs) — ¥a)/ (5¢4)]. (4.13)

Equation (4.13) is reduced to

fpr/ke — 1= 5¢ ——(Pa(gs) — tha). (4.14)

Noting Wjj := Usj — U; — Uj + E¢[Uj], and Z; := U; — Ef[U;], it follows that (3.28) becomes

ba(9) — Erlthalg) —122 +on 23wy, (4.15)
1<J
where 272", <; Wij is the degenerate U-statistic. From (3.30), we obtain the asymptotic normality

distribution from the standard CLT. That is,

n1/2 Z Z; ~L5 N(0, Var[£(6,)]). (4.16)

11



If we choose g, = W(S)n?/7, then applying Lemma 1 to 2n 2 Ei<j Wij, it is given by

2
2 Z Wi; N N(0, 271_292/2G1,0(S4)1/10)7 (4.17)
i<j

as n — oo. The details are presented in Appendix H. By combining (4.16) and (4.17), we obtain
the asymptotic distribution of (4.15). That is,

Da(gs) — Byliha(g:)] L N (0,40~ Var[f(0:)] + 2022 >G1 0(S4) o). (4.18)

Corollary 2 shows that the rate of Varf[lﬂzl(g*)] is the order n=%/7. Thus, the equation (4.18) is
reduced to

14 Pa(g.) = Br[da(g.)]} =5 N(0,2W2(8)G10(S4)¥o). (4.19)
The main team v4(g.) — ¥4 of the right side for (4.14) is equivalent to
0 (g:) —a}y = 01 {da(ge) — By [da(g:)]} — n®MBiasy[iha(g.)]. (4.20)

We show that Biasy [1ha(g*)] = O(n~%7) from Corollary 2. Then, we obtain that n5/14Biasf[1ﬂ4(g*)]
is O(n*3/ 14) Thus, ifA n is large, then this term is ignored. Therefore, the asymptotic normal
distribution for n%'{t4(g,) — 4} is given by

n®/ 141y (g) = pa} =5 N(0,2W/2(S)G10(S1)vko). (4.21)
Therefore, as n — oo, Theorem 5 completes the proof from (4.21) and (4.14). O O

The convergence rate of ~cy and Rpy are equivalent to that of LSCV selector and DPI selector on
the real line, respectively ([Hall and Marron(1987)], [Scott and Terrell (1987)], and [Sheather and Jones (1991)]).
The rate of &py is greatly faster than that of £cyv. Moreover, Apr is more stable with the smaller order
of variance. Therefore, the DPI selector is more appealing with respect to theoretical performances
than the LSCV selector.

5 Numerical experiment

Analyzing practical data of a small sample size often does not have the same effect as the theoretical
results. Therefore, we need to perform a simulation for comparing the LSCV selector and the DPI
selector. Our simulation in statistical software R is conducted by the following procedure:

1. Generate the random sample of size n distributed as the VM distribution fynm(0;7 = 1).
2. Calculate the optimal parameter x, applying fym(6;7 = 1) to (2.4).

3. Estimate £cy by bw.cv.mse.circular, which is the function in circular library of R.

4. Estimate &pr by the One-step plug-in rule.

5. Calculate Yoy = log(kcv/ks«) and Ypr = log(Ap1/ks).

12



6. Repeat Step 1-5 1000 times, and give the kernel density estimators of Yoy and Ypr to estimate
the bandwidth h with normal reference rule, respectively.

Fig. 1 shows that the DPI selector #pr has a smaller variance and bias than the LSCV selector
kcv. In other words, Apy is more stable. The LSCV selector #cy trends to be undersmoothing,
although it is sometimes greatly oversmoothing even if n = 1000. The simulation indicates that Aps
performs better than Acy in practical analysis.

(a) Sample size n is 100. (b) Sample size n is 1000.

Figure 1: The solid line is the kernel density estimator of log(kpr/k«) and the broken line is the
kernel density estimator of log(Acy/ks), where &py is the DPI selector, Aoy is the LSCV selector,
and k, is the optimal smoothing parameter. The selectors are based on 1000 simulated samples of
size n = 100 and 1000 from the VM density.

6 Conclusion

We derived the asymptotic properties for the least squares cross-validation selector and the direct
plug-in selector for circular data. The convergence rate of the DPI selector is O(n~%/ 14) and that
of the LSCV selector is O(n~/19). The rates are equivalent to the two selectors on the real line,
respectively. Thus, the theoretical performance of the DPI selector is better than that of the LSCV
selector. Our simulation shows that the DPI selector is more stable than the LSCV selector.
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Appendix A
Lemma A. 1. If K, is a pth-order kernel, then, Cy(L) is reduced to
Cu(L) = 712212 40(L) + O(k~PTV/2),

Lemma A. 2. We set o;(K,) := [ Ku(0)67d6, g;(r/r) := {2 — r/k}U=D/2 for j > 0, and
as = (2s —2)!1/{(2s — 1)!ls}. the tth power of 6 is given by

z/2
0% =" Ag(z,){r/e2—r/r)} + Ok~ D) 0< 0 < 7/2, (A.1)

g=t
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where

z/2

Ag(z,t) == > ti', ayt. (A.2)

tilta! - - - t, /9!
Z§/21 ts=t, Z§/2 sts=q / =1

Therefore, ag(Ky) for even 2t < z < p+ 4 is given by

z/2 z/2—q
a(Ky) = 207 (L) 2N 3 w0 A (2, ) (md) gl (0) paggemy (L) + O™ EH2/2) (A3

g=t m=0

If K, is a pth-order kernel, then (A.3) is reduced to
an(Ky) = bpaeng  (L)pp(L)r P2 + O(=PD72) 0 < j <p, (A.4)

where,
/2
=2 A 0ilp/2 - ) os " 0).
Especially, the term by 5 is 2. It follows from (A.3) that
api () = O(~02)/2), (A.5)
Lemma A. 3. The term R(K(0)6") is equivalent to
R(K(0)6") == ="V [dyy(L) + o(1)),

where do; (L) := 27 g 3(L)d2(L) and d(L) := do(L).

Appendix B

We will derive the conditional expectation ;. If ¢ is odd, then, we obtain that the term f y)ytdy =
0, because the function y(y) is symmetry. By the binormal theorem, f_ﬁ y)y2tdy is reduced to

/7r Yy)y*'dy = /Km(w)/KH(S)(S — w)*dwds — 200 (Kp,)

—T

= (1) "2 Crntm (Kix)0ig—m (Kix) — 20020 (Ko). (B.1)

Recalling that the kernel K is second-order, by combining (B.1), (A.4), and (A.5), it is derived
that

-1 =0,
g 0 t=1
2y = ’ B.2
L= e it s o) ¢ (52)
O(k73) t=

15



noting 7(y) is a symmetric function, from (B.2), the conditional expectation ~; is given by

i = / " (01— 0;)£(6;)d0;

—T

= /7r YY) f(©; + y)dy

—£(01) + DOy (L) (L)r 2 + Ok ™).

Appendix C

We derive each term of the variance Var([CV(k)]. We present the expectation E; [%2]] as

B3l = [ [ 26— 00060 505) 8,00
:/_ 76 [ ) (0, + u)duds,

v
= R(f)R(v) + O(R(v(y)y) (C.1)

We produce the following lemma regarding R(v(y)y?).

2
Lemma C. 1. We set Q(L) := [ { g3 (L)n(z) — 21/2,u51(L)L(z2/2)} 2?'dz. Then, the
term R(vy(y)y') is given by

R(v(y)y)' = 6~ @D/2[Qgy(L) +0(1)] t=0,1.

Proof. Let y = k=122, Then, Applying cos(k~/%2) = 1 — 22/(2r) + O(x~2), the Taylor expansion
of L(k~1/22) is given by

Le(k7%2) = L(k[1 — {1 — 22/(2k) + O(k2)}])
= L(%/2) + O(k™1). (C.2)

It follows from (C.2) that

K/1/27T

/ Lis(w)Ls(w + 171/22)dw = / Li(k™ PO L(k7 2 (t + 2))n M2t
- —k1/27
1/2,

12 / T L)L+ 2)2/2)dt + O(=)

_kl/27

= k" Y2[n(z) + o(1)]. (C.3)
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2
We put Q2 0,(L) == [” 1/12/2 { g3 (L)n(z) — 21/2u51(L)L(22/2)} 2?'dz. Then it holds from

(b) and (e) that Q,{l/g’%( ) = Qa(L)+ o(1) for t = 0,1. By combining (C.3) and Lemma A.1, the
term R(vy(y)yt) is given by

T T 2
R = [ { Kﬁ<w>m<w+y>dw—m<y>} V2 dy

—T —T
K2

a 2
= / { Ke(w) K (w + £7Y22)dw — 2KH(,<;—1/2Z)} (k220212
_kl/2

-7
K1/ 27

0 2
:/ {CEQ(L)/ Li(w) L(w + 57 22)dw — 2K,£(,€—1/22)} (h1/22)2 124,
_xl/2g

k2
@iz [T LG L R e) + (1)) - 20 (DL 2) + O]} S

K1/2

po D2 / ) {(w”%l/“’m(m +0(s73/2) 2572 [n(2) + o(1)]
_kl/2
2
— 25722210 (L) + O(k3/%)) HL(2%/2) + O(/il)]} 22tdz

k12 2
et [ Lo ) - 2 (DD ) + o ] e
_rkl/2p
kD2 (Q, 00(L) + o(1)]
k™ N2[Q0, (L) + o(1).
] ]

Noting that Qo(L) = Q(L), from combining (C.1) and Lemma C.1, the expectation Ef[fyfj} is
given by

Eflvi] = 2 IQ(L)R(f) + o(1)]: (C.4)

From combining (3.7) and (C.4), it follows that Var[y;;] is equivalent to (3.9).
Noting that v; = [™_~(6; — 0;)f(0;)db;, then, from (3.6) we derive Ef[v;;v;%]. That is,

v / / / Y (0: — 0) £(6:) £(65) F (O1)dB:ddt; ),
e 2
- [ s >[/ (6 — 6;)£(6;)d6; | db,
= R(f3/2) —2R((fNY2 ) g2 (L)p3(L)s~2 + o(k72). (C.5)

By combining (3.7) and (C.5), we obtain that Cov¢[vi;, vix] is equivalent to (3.11).
From (3.7), we derive that E[v;; f(©;)] is given by

Byl /(O /_ ﬂ /_ i £(6:)£(6;)1(6,)6,a6;

f3/2)+R((f N2 g2 (L)p3(L)E2 + o(k2). (C.6)
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From combining (3.7) and (C.6), we derive that Cov[vy;j, f(©;)] is given by (3.12).
The variance Vary[f(0;)] is equivalent to

Var[f(68,)] = E[f(6,)] — E[f(6:)]*

= R(f**) — R(f)*
= I3.

Appendix D

we derive the expectation E¢[U; 2m] That is,

wozr) = [ [ 10— 0,2 1000 d0i0
=/ f(Gj)/ T (w)>™ f(0; + ) dudf;
= /7r f(ej) /_7r Tg(4)(u)27n[f(ej) +O(u2)]dudﬁj

= ¢;R({T(4)}§m) + O(R{Ty (u)}*"u) (D.1)
Lemma D. 1. The term R({Tg(4)(9)}m0t) is given by
RUTIN(0)}m0") = g0 =270/ (G y(S4) + 0(1)} (D.2)

fort =0,1 and m =0, 1.

Proof. The Taylor expansions of cos(g~1/ 22) and sin g~1/22 are reduced to
cos(g™%z) =1 - 2%/(29) + O(g7%), (D.-3)
and,
sin(g™122) = g Y22 + O(g73/?), (D.4)

respectively. From considering (3.20), (C.2), (D.3), and (D.4), the approximation of S§4) (g7122) is
given by

Se(g7122) = g* (5P (2 /2) + 622D (27 /2) + 2*5W(2?/2) + o(1)}
= g*{8u(z*/2) + o(1)}. (D.5)

We set 172 ,(S") fgl/l/;r S2m(22/2)2%tdz. Then, it holds from (g) that & g24(ST) = 8(ST") +
o(1) for t = 0,1, and m = 1,2. By combining Lemma A.3 and (D.5), The term R({T, g( )(0)}m9t) is
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reduced to

RUTO(0)y6") = €, 2™(S) /_ ! {5§4>(9)m9t}2d0
gt/2x

2
—_ (—2m 4)/,—1/2 \xm/,,—1/2 N\t —-1/2
Cy7m(9) /_91/27r {Sg (g 2)"(g 2) } g dz

/2,

= ¢y [ R(122) + (1))

—gl/2x

= [21/2)=1(8)g Y2 4 O(g~P+D)/2)}~2m g (Bm—2t+1)/2 {591/2’t(521) +0(1)}

= 27"y (8)g ORI {5(S]) + o(1)}
_ g(10m—2t—1)/2 {Gm,t(S4) + 0(1)} )

O]

From combining (D.1), and Lemma D.1, the expectation E;[U; Qm] is given by
Ef[U7"] = g2 [oGin0(Sa) + o(1)].
It follows from (3.26) that

B [UZ] = Ef[{f9(©)) + o(1)}
— B/[fD(0,)? + o(1).

Appendix E

We calculate -4 2=7(i5). We derive

a4
dk

We set LC,.(L) = CL(L) and ay(¢y) := [7_¢n(y)y'dy . 1t follows that

kC;HL)CL(L) = kCH(L) / %Lﬁ(ﬁ)(w
= ao(¢r)
We provide the following lemma regarding (o)

Lemma E. 1. The term «,(¢) is given by

—%—% po (L)pa(L)s~ + O(k72) ¢ =0,
ap(dr) =  =3pg (L)po(L)k~ +O( 2) t=2,
U (L)L 2 =0(w2)  t=4.
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Proof. From (b), the partial integration of i, (L) := foﬁ L(r)rt=Y/2dr for | < 4 is to

I—1 [~
Ha (L) = [L(r)r=D72)s — 2/ L) =3)/24y
0

= _Z_Tlﬂn,l—Q(L) +O(r7%). (E-3)

The term ag(¢y) is divided into the following two terms. That is,

/2 T
at(pr) = 2 /0 br(0)6%1d0 + 2 / B b (0)6%d6. (E.4)

Recalling that we chose the second-order kernel for LSCV, the second term of (E.4) is ignored from
combining (d), (E.3), and lemma A.1. That is,

2 / $r(0)6%1d6 < 27 br(60)df
w/2 /2

<2r?tCc (L) /; L' (k{1 — cos(0)}) k{1 — cos() }do
2K
o0\ (L) / L) {ra(2 — r/r)} = 2dr

K

2K
=2 C L2 [ L a2 0 )

=O0(rk™3). (E.5)
By considering (d), (E.3), and (E.4),we derive the terms ag(¢.), aa(¢s), and aq(py). That is,
w/2
ao(0n) =2 [ 6.(6)d8 + O?)
0

= QC_I(L) /K L'(r)yr{rs(2 — r/@)}_lﬂdr + O(/@_?’)
0

=20 (L)x~/? / L'(r)rt/2[2712 — 2752 1 4 O (k7)) dr + O (k)

0
=20 (L) k227 Py (L) — 27526 pug o (L) + O(72)] + O (k%)
1 3 _ _ _
=75 gho YL)p2 (L)~ 4+ O(k72), (E.6)

/2
as(dx) = QCﬂl(L)/O L'(k{1 — cos(0)})k{1 — cos(#)}6%dH + O(r~3)
= 26’;1(L) /OPi L'(r)yrlr/s(2—r/k) + O(H_Q)]{TKZ(Q — T/K)}_1/2dT + O(/i_?’)

=20 (L [ L2 = /) e+ O ?)
0

= 20,;1(L)ff?’/z,uzx,n(lz/){?lm +O0( )} +0(k™?)
= 25 (L)(=3p2(L)/2)s " + O(k™?)
— 3 (L)pa(Dy + O(s72),
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and,
w/2
aa(d) = 2 / 6u(0)6°06 + O(s~?)
0

=2C-1(L) /OI.Q L'(r)yr[{r/s(2 — 7“/,%)}2 + 0(5_3)]{1"/1(2 — r/n)}_l/er + O(m_g)

= O0(k?). (E.7)
U U
Then, by combining (E.1), (E.2), and Lemma E.1, it follows that

‘hc(liij) — d% {Cf(L) /W Ly(w) Ly (w + yi5)dw — 2C;I(L)Lﬁ(y¢j)}

—Tr
™

= —203(L)C(L) / Ly(w)Ly(w + yi5)dw

ve | )

—T

’ %{Ln(w)[/n(w + yij)}dw
20 (L)CLE) L) — 207 (1) - L)
=kt [—20[0((;5&) ' K (w)Ky(w + yi;)dw

—Tr

[ 0n) K+ i) + ()l + i) Y
T 200(60) K (i) — 2¢n<yzj>]

e~ [ Ko (w) Ko (0 + yi)dw — 2K (yi)

—T

+ Ki(yij) + _W {bn(w) Ki(w + yij) + Ki(w)du(w + yij) bdw — 2¢,(yi;)

4 —r
= & (i) + (i) + 3/4ug (L) pa (LK~ 7 (y35)]
= 12V (E.8)

B LDy { " () K+ yiy)do — Kﬁ<ym>}]

We obtain the equation (4.5) from (E.8) and (4.4).

Appendix F

Let p; := E¢[pi;|©;] and 7; := E¢[7;;|©;]. Then, The conditional expectation V; is presented as the
following linear combination of the conditional expectations ~;, p;, and 7;.

_ 3 _ -
Vi= w2 it gyt g (DD (F.1)
We present the following lemma regarding p;.
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Lemma F. 1. The conditional expectation p; is given by

f(2)(@i)
4

pi = f(©i) =3 + () | o H3(L)s™2 + O(r~%)

(F.2)

Proof. The term ag(p) = [7_p(y)y*'dy is given by

agt(p) = az(Ky)
+kC (L) / {on(W)Kp(w +y) + Ke(w)pn(w + y) }y* dwdy — 2004 (). (F.3)

—T J =T

The second term of (F.3) is reduced to

| [ t6at Rt +0) + Retwhontw + o) dody

—T J =T

=2 [ [ Kuon()}s — w)dudy
2t

= 2/7r i Ky (w)og(s) [Z(—l)mgtmems%m dwds

m=0

2t
=2 (1) Crnm K)ozt (bs)- (F.4)
m=0

It follows from (F.3) and (F.4) that
ao(p) = a0y = 1, (F5)

and
2t
Ol2t(/?) = Ol2t(Kn) +2 Z (_1)m2tcmam(Kn)a2tfm(¢n) t>1. (F6)
m=1

From combining Lemma A.2, Lemma E.1, and (F.6), it follows that

0alp) = — g (LR + Ok ™), (F.7)

as(p) = =72p5 215 (L)s ™2 + O(r ),
and,

ag(p) = O(k™). (F.9)
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By combining (F.5), (F.7), (F.8) and (F.9), we obtain the conditional expectation p;. That is,

We present the following lemma regarding ;.

Lemma F. 2. The conditional expectation 7; is given by

7 = f@(O)ug o (L)~ + O(r72).

Proof. We set ay(7) := f:r 7(y)y'dy. Then, it follows that

2t

ag(T) = Z<_1)m2tcmam(Kn)a2t—m(Kn) — ag(Ky).

m=0

(F.10)

(F.11)

(F.12)

From combining Lemma A. 2 and (F.12) It follows that the terms ag(7), aa(7) and ay4(7) are equal

to,

and,

respectively. It is shown from (F.13), (F.14) and (F.15) that

T = /7r 7(0; — ©;) f(0;)db;

-
™

- / ~(4)f(©1 + y)dy

N @)(e,
= f(0;)ap(T) + / 2(61)042(7') + O(ay(1))

= POy (D)pa(L)s™" + O(x73).

23
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By combining (F.1),(3.6) Lemma F.1, and Lemma F.2, The conditional expectation V; is reduced
to

_ 3 _ _
V=2 i pi + g (L) pe(L)k

4
= —2f"(0) g 2 (L) (L) ~"% + o(k /). (F.16)
The expectations of V; and Vf are given by
By [Vi] = —2R(f")y 2L (L)n /2 + o(n ™), (F.17)
and
Ef[V?] = 4[R(fY S ug (L3 (L)s™> + o(r %), (F.18)

respectively. We obtain the variance of X; from (F.17) and (F.18). That is,
Varp[X;] = 4[R(fW 1) = R(") g (L)ua(L)r—° + o(k™2). (F.19)

From (F.19), we show that the variance Vary[X;] is finite. Thus, we obtain (4.7) from the central
limit theorem.

Appendix G

We derive the expectation E f[ng] That is,
BV = [ [ b 0 67) 4 p(6: — ) + 00 )0 16, b

= | [ [ 000 0+ 0065 - 617 1050000 {1+ 0t0)
=r " [R((v+p)")R(f) + O(R((y + £)"y))] - (G.1)
Lemma G. 1. The term R((y + p)™y)™y) is given by
R((y+ p)™)"™y) = K202 (M, (L) + o(1)]

Proof. We set

P(y) = /7r L' (k{1 — cos(w)})k{1 — cos(w) } L(k{1 — cos(w + y)})dw.

—T

then, the term |7 d%{Ln(w)L,{(w + y) }dw is reduced to

o [ AL Ll + ) = 00) + (), (G.2)

_xdr
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We set A.1/2(L) := fiﬁ’;ﬁ L'(£2/2)L((t + 2)?/2)t?/2dt. Then, it holds that A i/2(L) = A(L) + o(1)
from (f). Thus, it follows that

k127
¢(l{_1/22) _ /_ o (k{1 - COS(H_l/%)})K{l - COS(H_I/Qt)}L(I{{]_ _ COS(IQ_I/Q(t + Z))})/{_I/th
w1/ 2x

= 5V [/ LU+ 2P /R)L /2R 2+ O

— kY2 Aase(2) + O(x™ )]

= 5 V2 [{A(2) + o(1)} + O]

=Kk Y2\ (2) + o(1)] (G.3)
We sot Mnmt = [T T m L)>m22tdz. Then, it holds from combining (b), (e), and (f) that
My mi(L) = ( ) 4 o(1). From considering this, (C.3), and (G.3), The term R({y + p}™y') is

reduced to

R+ o)) = [ 12l) + pla)dy

- / e [cﬂf:) { / " L) L+ 5 Y22)dw + (5~ Y25) + w(—nmz)}

—k1/27 -7

= O (DALa(x71%2) + 2L/ ({1 = cos(x™"*2)})w{1 - cos(n—lﬂz)}}] R LTS
k12

o~ (2t+1)/2 /_ y [0;2(L)H—1/2 {n(z) + A(z) + A(=2) +o(1)}

2m

— CTYD{L(z2/2) + L' (22 /2)2* + O(x™1)}|  2%dz

v 2m
_ e [T ap @ M)+ A=) LET/2) + L(27/2)27 oy
/_51/2 [ { 2u3(L) 21/250(L) + (1)}] d

K(2m72t71)/2[MH7m7t(L) + 0(1)]
= gGm=2=D20 (L) + o(1)).

O O
From combining (G.4), and Lemma G.1, it follows that
Ef[Vi™] = k72 [(Mno(L)R(f) + o(1)]. (G4)
From (F.16), it follows that V; = O(k~%/2). Then, The expectation E; [Hf]m] is reduced to

Ef[H"] = Bf[{Vij — Vi = Vj + B¢ [Viy ]}
= Ef[Vi" {1+ 0(1)}
= 12 [Myn o (L)R(S) + 0(1). (G-5)
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Noting that Vj; is a constant, it follows that

Gz‘j = E[H”H”]
= E[{Vii + Ef[Vi] = 2Vi}{Vij — Vi = Vj + E;[Vi]}]
= 0 — 2B (V"] + 2E¢[V;?] + 2B [Vi]* — 2E;[V;)?
= 0. (G.6)

From (G.5) and (G.6), it follows that the U-statistic H;; satisfies (4.3). That is,

BIGH] +n By [H]  n~ s~ V2[Mao(L)R(f) + o(1)]
Ef[H3]? ~ [RTY2Muo(L)R(f) + o(1)]
= o(1). (G.7)

We obtain the asymptotic normality for (4.8) from (G.7).

Appendix-H
Let g_9/4WZ-j = Q;j. By (3.31), the expectation Ef[Q?j] is given by

Ef[QF] = g~ PEf W]

= G1,0(54)¢0 + o(1). (H.1)
From combining (3.26), (3.27) and Lemma D.1, it follows that

Ef Q4] = g7 Ef W]
= g Ef[U5{1 + o(1)}

= 9"*{Ga0(Sa)vo + o(1)}. (H.2)
By combining G;; = 0, (H.1), and (H.2) It follows that that

E[G] +n'Ef[Qf] 0+ 1Y Ga,0(Sa)1hog % + o(g'/?)]
Ef[Q3)]? a [G1,0(S1)10 + o(1)]?
— o(1). (H.3)

the d-generate U statistic Q);; satisfies Lemma 1 by (H.3). Therefore, as n — oo, it holds that

3" Qi -5 N(0,02G10(S1)v0/2). (H.4)

i<j

We obtain the asymptotic normality from (4.17) from (H.4).
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