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Abstract

We defined new kernel functions of pth-order with new moments
called for effective moments. the kernel functions can give improvement
to reduce the bias. We showed that our kernel functions has the conver-
gent rate of the mean integrated square error O(n−2p/(2p+1)) and the
asymptotic normality. Moreover, we show two methods to construct
higher order kernel density estimators. Our simulation syas that the
higher order kernel density estimators is better than the second order
kernel density estimator as n is large.

1 Introduction

Given a random sample on the circle Θ1, . . . ,Θn ∈ [−π, π) from an unknown
density f(θ). The kernel density estimator (KDE) on the circle is defined
as,

f̂κ(θ) =
1

n

n∑
i=1

Kκ(θ −Θi),

where Kκ(θ) is a symmetric kernel function and κ is a concentration param-
eter, which plays a role of a smoothing parameter and corresponds to the
inverse of bandwidth on the real line.

Di Marzio et al.(2011) defined sin-order kernel functions with sin-order
moments ηj(Kκ) :=

∫ π
−π sin

j(θ)Kκ(θ)dθ and derived the property of the

mean integrated square error (MISE) for f̂κ. They showed that the conver-
gent rate of the MISE for the von Mises (VM) kernel (the second sin-order
kernel) is O(n−5/4) . They described that sin-order kernel functions do
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not necessarily yield smaller bias. In other words, the order p of the pth
sin-order kernel function does not generally correspond to the convergent
rate of the MISE. For example,Tsuruta and Sagae (2016) indicated that the
optimal MISE’s rate of the wrapped Cauchy kernel (the second sin-order
kernel) is O(n−2/3). They succeeded in construction of higher-order kernels
and improvement of the bias by “Twicing” of the bias reduction technique.

We introduce the new class of pth-order kernel functions with new mo-
ments in the next section. The convergent rate of the MISE of f̂κ achieves
O(n−2p/(2p+1)) with the pth-order kernel Kκ. In addition, the f̂κ also has
the asymptotic normality.

Higher-order kernel density estimators are constructed by applying either
the additive method by Jones ad Foster (2013) or the multiplicative method
by terrell and Scott (1980) to our kernel functions. Our simulation shows
that these higher-order KDEs have better properties than the second-order
KDE as n is moderate or large.

2 Properties of higher-order kernel density esti-
mators

We redefine the kernel functions for deriving higher-order properties of the
KDE f̂κ. The kernel function is Kκ(θ) := C−1(L)L(κ{1 − cos(θ)}) defined
by [4], where Cκ(L) is the normalizing constant.

Definiton 1. (Kernel function)
Kκ(θ) : [−π, π) → R satisfies with the following five conditions,

(i) It is defined as Kκ(θ) := C−1
κ (L)Lκ(θ), where Lκ(θ) := L(κ{1 −

cos(θ)}) and Cκ(L) :=
∫ π
−π Lκ(θ)dθ,

(ii) The term L(r) → 0 as r → ∞, where r = κ{1− cos(θ)},

(iii) Let be δκ1/2,2t(L) :=
∫ κ1/2π
−κ1/2π L

2(z2/2)z2tdz, δ2t(L) :=
∫∞
−∞ L2(z2/2)z2tdz,

and δ2t(L) has bounded for t=0,1,

(iv) Let l ≥ 0 and v ≥ 2 be even. Define the lth moment as,

µl(L) :=

∫ ∞

0
L(r)r(l−1)/2dr,

(v) Let be µκ,l(L) :=
∫ κ
0 L(r)r(l−1)/2dr. The lth moment µl(L) is bounded

and µκ,l(L) = µl(L) +O(κ−(v+2)/2) for any 0 ≤ l ≤ v.
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We define the pth-order kernel function.

Definiton 2. (pth-order kenel function)
Let p ≥ 2 be even. We will say that Kκ(θ) is pth-order kernel for v ≥

p+ 2, if,

µ0(L) ̸= 0, µl(L) = 0, l = 2, 4, · · · , p− 2 and µl(L) ̸= 0 l = p.

We prove higher-order properties of f̂κ by using the later lemmas 1-3.

Lemma 1. Let be gj(r/κ) := {2 − r/κ}(j−1)/2 for j ≥ 0. Then, Cκ(L) is
given as,

Cκ(L) = 2

v/2∑
m=0

g
(m)
0 (0)

m!
κ−(2m+1)/2µ2m(L) +O(κ−(v+1)/2). (1)

If Kκ is pth-order kernel，then the term Cκ(L) is reduced to,

Cκ(L) = κ−1/221/2µ0(L) +O(κ−(p+1)/2). (2)

See Appendix-A for the details.

Lemma 2. Put αj(Kκ) :=
∫ π
−π Kκ(θ)θ

jdθ and as := (2s−2)!!/{(2s−1)!!s}.
Let z ≥ 0 be even and 2t ≤ z ≤ v. Then, the term α2t(Kκ) is given as,

α2t(Kκ) = 2C−1
κ (L)κ−1/2

z/2∑
q=t

z/2−q∑
m=0

κ−(q+m)Aq(z, t)(m!)−1g
(m)
2q (0)µ2(q+m)(L) +O(κ−(z+2)/2),

(3)

where,

Aq(z, t) :=
∑

∑z/2
s=1 ts=t,

∑z/2
s sts=q

t!

t1!t2! · · · tz/2!

z/2∏
l=1

atll .

If Kκ is pth-order kernel, then the equation (3) is reduced to,

α2t(Kκ) = bp,2tµ
−1
0 (L)µp(L)κ

−p/2 +O(κ−(p+2)/2) 0 < j ≤ p,

where，

bp,2t = 21/2
p/2∑
q=t

Aq(p, t)({p/2− q}!)−1g
(p/2−q)
2q (0).

The term αp+2(Kκ) = O(κ−(p+2)/2) is shown by (3).
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See Appendix-B for the details.

Lemma 3. Let be R(g) :=
∫ π
−π g

2(θ)dθ. The term δκ1/2,2t(L) = δ2t(L)+o(1)
by (iii) leads to,

R(K(u)ut) := κ−(2t−1)/2[d2t(L) + o(1)], (4)

where d2t(L) := 2−1µ−2
0 (L)δ2t(L) and d(L) := d0(L).

See Appendix-C for the details.

Put MSE[f̂κ(θ)] := E[{f̂κ(θ)−f(θ)}2] and MISE[f̂κ] :=
∫ π
−π MSE[f̂κ(θ)]dθ.

The higher-order properties of f̂κ are obtained by lemmas 1-3.

Theorem 1. (the MISE) Under the conditions:

(i) Let be κ = κ(n). Then, limn→∞ κ(n) = ∞,

(ii) limn→∞ n−1κ1/2(n) = 0,

(iii) f is (p+2)th differentiable and f (s), s = 1, 2, · · · , p is square-integrable,

(iv) Kκ is pth-order kernel functions,

The MISE is derived as,

MISE[f̂κ] =
µ2
p(L)

µ2
0(L)

R

( p/2∑
t=1

bp,2tf
(2t)

2t!

)
κ−p + n−1κ1/2d(L) + o(κ−p + n−1κ1/2).

(5)

The main terms of (5) is referred as AMISE[f̂κ]. The minimizer κ∗ of
AMISE[f̂κ] is equal to,

κ∗ =

[
2pµ2

p(L)R(
∑p/2

t=1[bp,2tf
(2t)/(2t!)])n

µ2
0(L)d(L)

]2p/(2p+1)

. (6)

Thus, the optimal MISE for KDE f̂κ with pth order kernel is O(n−2/(2p+1)).

See Appendix-D for the proof.

It is shown that f̂κ has asymptotic normality.
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Theorem 2. (Asymptotic Normality) Let be κ = cnα. If α > (2p + 1)/2
and n → ∞, √

nκ−1/2[f̂κ(θ)− f(θ)]
d−→ N(0, f(θ)d(L)).

See Appendix-E for the proof.

We explore about MISE properties of the VM kernel function, which is
typical kernel on the circle. The main term of the VM kernel function is
defined to Lκ,VM(θ) := exp[−κ{1 − cos(θ)}]. The moment of VM kernel
is given as µl(LVM) = Γ(l + 1/2) where Γ(1/2) =

√
π and Γ(l + 1/2) =

(2l − 1)!!
√
π/2l for l ≥ 1. The VM kernel is the second-order kernel since

µ2(LVM) ̸= 0. The VMKDE is represented as f̃VM
κ (θ). The AMISE of

f̃VM
κ (θ) is given as,

AMISE[f̃VM
κ ] =

1

4
R(f (2))κ−2 +

κ1/2

2
√
πn

. (7)

The AMISE of (7) and the optimal concentration paramator κVM = [2
√
πR(f (2))n]2/5

are equivalent to those of the VM kernel derived by Di Marzio et al. (2011).
We derive two methods for constructing higher-order kernel density esti-

mator. Method-1 (Additive method) is constructed by using the kernel and
its derivative. Method-2 (Multiplicative method) is done by combining two
KDEs with different concentration parameters. Introduce the notation of
the pth-order kernel for the latter discussion. Let pth-order kernel function
be Kκ,[p] := C−1

κ (L[p])Lκ,[p](θ), where Lκ,[p](θ) := L[p](κ{1− cos(θ)}).

Method 1. (Additive method)
Notice r = κ{1 − cos(θ)}. Let be dL[p](r)/dr := L′

[p](r) and L[p](r) be

differentiable. Then the main term LJF
[p+2](r) of Jones and Foster’s (JF)

kernel KJF
κ,[p+2] is defined as,

LJF
[p+2](r) :=

p+ 1

p
L[p](r) +

2

p
rL′

[p](r). (8)

Then, the JF kernel KJF
κ,[p+2] is (p+ 2)th-order kernel.

See Appendix-G for the details.

Method 2. (Multiplicative method)
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The ratio of two second-order KDEs f̂κ(θ) and f̂κ/4(θ) with different
bandwidths constructs the fourth-order Terrell and Scott’s (TS) KDE, that
is,

f̂TS
κ (θ) := f̂4/3

κ (θ)f̂
−1/3
κ/4 (θ).

Then,

AMISE[f̂TS
κ ] = R(G)κ−4 + n−1κ1/2D(L), (9)

where G(θ) and D(L) is given by (G.7) and (G.12), respectively. The mini-
mizer κTS of (9) is given as,

κ∗TS :=

[
8R(G)n

D(L)

]2/9
. (10)

This derives the optimal MISE = O(n−8/9).

See Appendix-F for the details.

We generate L̃JF
κ,[4](θ) by applying (8) to Lκ,VM(θ) of the VM kernel.

Then L̃JF
κ,[4](θ) is given as,

L̃JF
κ,[4](θ) = {3/2− κ{1− cos(θ)}} exp[−κ{1− cos(θ)}].

Let be f̃JF
κ (θ) := n−1

∑
i K̃

JF
κ,[4](θ), where K̃JF

κ,[4](θ) := C−1
κ (L̃JF

[4] )L̃
JF
κ,[4](θ).

The optimal concentration parameter κJF is represented as,

κJF =

[
16

√
π

3
R

(
5f (2) + 2f (4)

12

)
n

]2/9
.

(11)

This also derives the optimal MISE = O(n−8/9).
The optimal concentration parameter κTS of that f̃TS

κ (θ) is derived from
two the VMKDEs with different concentration parameters by Method-2. By
(10), the parameter κTS is given by,

κTS =

[
288

33− 16
√
2/

√
5
R

(
{f (2)}2

2f
− 5f (2) + 2f (4)

4

)
n

]2/9
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3 Simulation

For practical exemple the optimal concentration parameter depends on a
true density f . We use the plug-in rule to estimate it. The plug-in rule
assumes that f is the VM density fVM(θ; τ) := (2π)−1I0(τ) exp{τ cos(θ)},
where Ip(τ) denotes the pth modified Bessel function of the first kind and
order 0. The plug-in rule uses the maximum likelihood estimator τ̂ as an
initial value. We denote the plug-in rule estimators of κVM, κJF and κTS as
κ̂VM, κ̂JF and κ̂TS, respectively,

κ̂VM = [2
√
πR̂τ̂ (f

(2)
VM)n]2/5,

κ̂JF =

[
16

√
π

3
R̂τ̂

(
5f

(2)
VM + 2f

(4)
VM

12

)
n

]2/9
,

(12)

and,

κ̂TS =

[
288

33− 16
√
2/

√
5
R̂τ̂

(
{f (2)

VM}2

2fVM
−

5f
(2)
VM + 2f

(4)
VM

4

)
n

]2/9
.

See Appendix-H for the above details.

Our simulation follows the (i)-(iii) procedures :

(i) The VM kernel density estimator f̃VM
κ (θ):

(a) Generate the random sample of the size n distributed as fVM(θ; τ),

(b) Estimate κVM by the plug-in rule,

(c) Calculate ISE(f̃VM
κ ), where ISE(f̃VM

κ ) is the numerical integra-
tion for ISE =

∫ 2π
0 {f̂(θ; ρ)− f(θ)}2dθ.

(d) Repeat (a)-(c) 1000 times and compute MISE(f̃VM
κ ) =

∑1000
i=1 ISEi(f̃

VM
κ )/1000.

(ii) The Jones and Foster kernel density estimator f̃JF
κ (θ):

With the same procedure as (a)-(d) of f̃VM
κ (θ), compute MISE(f̃JF

κ )

(iii) The Terrell and Scott kernel density estimator f̃TS
κ (θ):

With the same procedure as (a)-(d) of f̃VM
κ (θ), compute MISE(f̃TS

κ ).

Table 1 shows that the JFKDE f̃JF
κ and the TSKDE f̃TS

κ trend to be superior
to the VMKDE f̃VM

κ under that n is moderate or large . The result is caused
by the fact that both f̃JF

κ and f̃TS
κ are forth-order, while f̃VM

κ is second-order.
f̃JF
κ is the best for τ ≥ 2, and f̃TS

κ is the best for n ≥ 100 and τ ≤ 1, however,
f̃VM
κ is the best only if n = 50 and τ ≤ 1.
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Table 1: MISE’s are based on 1000 simulated samples of size n =50, 100,
300, 500 and 1000. τ is the concentration parameter of fVM. JFKDE is
the Jones and Foster’s KDE f̃JF

κ . TSKDE is the Terrell and Scott’s f̃TS
κ .

VMKDE is the VM kernel density estimator f̃VM
κ .

n = 50 n = 100 n = 200 n = 300 n = 500 n = 1000

τ = 0.5
JFKDE 0.006899 0.004334 0.002284 0.001567 0.00107 0.000611
TSKDE 0.006667 0.00415 0.002179 0.001494 0.000998 0.000531
VMKDE 0.006257 0.004399 0.002413 0.001718 0.001212 0.000699

τ = 1
JFKDE 0.010001 0.005652 0.003199 0.002156 0.001515 0.00085
TSKEDE 0.009331 0.005203 0.002884 0.001937 0.001349 0.000768
VMKDE 0.009248 0.005524 0.003319 0.002393 0.001676 0.000997

τ = 2
JFKDE 0.012996 0.00692 0.003905 0.002731 0.001809 0.000973
TSKEDE 0.013448 0.007196 0.004069 0.002838 0.001875 0.001013
VMKDE 0.013104 0.0077 0.004719 0.00347 0.002358 0.001394

τ = 5
JFKDE 0.021106 0.011399 0.006392 0.00442 0.00288 0.00159
TSKEDE 0.022821 0.012223 0.006842 0.004723 0.003078 0.001701
VMKDE 0.021729 0.012719 0.007763 0.005592 0.003908 0.002275
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Appendix-A

Proof of Lemma 1. Notice that gj(r/κ) =
∑z/2

m=0(m!)−1g
(m)
j (0)(r/κ)m+O(κ−(z+2)/2)

and dθ/dr = {rκ(2− r/κ)}−1/2 . This leads to,

Cκ(L) =

∫ π

−π
L({κ(1− cos(θ)})dθ

= 2

∫ 2κ

0
L(r)(rκ)−1/2{2− r/κ}−1/2

= 2

v/2∑
m=0

g
(m)
0 (0)

m!
κ−(2m+1)/2

∫ 2κ

0
L(r)r(2m−1)/2dr +O(κ−(v+3)/2)

= 2

v/2∑
m=0

g
(m)
0 (0)

m!
κ−(2m+1)/2µ2κ,2m(L) +O(κ−(v+3)/2)

= 2

v/2∑
m=0

g
(m)
0 (0)

m!
κ−(2m+1)/2µ2m(L) +O(κ−(v+3)/2).

If Kκ is pth-order kernel，then Cκ(L) is given as,

Cκ(L) = 21/2µ0(L)κ
−1/2 +O(κ−(p+1)/2).

Appendix-B

Proof of Lemma 2. Notice that sin2(θ) = r/κ(2−r/κ) via r = κ{1−cos(θ)}.
The Taylor expansion of θ2 = arcsin2({r/κ(2− r/κ}1/2) for 0 ≤ θ < π/2 is
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given as,

θ2 =

z/2∑
s=1

as{r/κ(2− r/κ)}s +O(κ−(z+2)/2), 0 ≤ θ < π/2. (B.1)

where as := (2s− 2)!!/{(2s− 1)!!s}. For z ≥ 2 of even, the tth power of the
both hand of (B.1) is equal to,

θ2t =

 z/2∑
s=1

as{r/κ(2− r/κ)}s +O(κ−(z+2)/2)

t

=
∑

∑z/2
s=1 ts=t,

t≤
∑z/2

s sts≤z/2

t!

t1!t2! · · · tz/2!

z/2∏
l=1

[atll {r/κ(2− r/κ)}ltl ] +O(κ−(z+2)/2)

=

z/2∑
q=t

Aq(z, t){r/κ(2− r/κ)}q +O(κ−(z+2)/2), 0 ≤ θ < π/2. (B.2)

We show that
∫ π
π/2Kκ(θ)θ

jdθ can be ignored.∫ π

π/2
Kκ(θ)θ

jdθ < πj

∫ π

π/2
Kκ(θ)dθ

= πjC−1
κ (L)

∫ 2κ

κ
L(r)κ−1/2r−1/2dr{2 +O(κ−1)}−1/2.

(B.3)∫∞
κ L(r)r−1/2dr = O(κ−(v+2)/2) is given by (v). This leads to,∫ 2κ

κ
L(r)κ−1/2r−1/2dr =

∫ ∞

κ
L(r)r−1/2dr −

∫ ∞

2κ
L(r)r−1/2dr

= O(κ(−v+2)/2). (B.4)

It follows from (1), (B.3) and (B.4) that,∫ π

π/2
Kκ(θ)θ

jdθ = O(κ(−v+2)/2). (B.5)
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By (2), (B.2) and (B.5), the term α2t(Kκ) is reduced to,

α2t(Kκ) = 2

∫ π/2

0
Kκ(θ)θ

2tdθ + 2

∫ π

π/2
Kκ(θ)θ

2tdθ

= 2

∫ π/2

0
Kκ(θ)θ

2tdθ +O(κ−(v+2)/2)

= 2C−1
κ (L)

∫ κ

0
L(r)

z/2∑
q=t

Aq(z, t){r/κ(2− r/κ)}q[rκ{2− r/κ}]−1/2dr +O(κ−(v+2)/2)

= 2C−1
κ (L)κ−1/2

z/2∑
q=t

z/2−q∑
m=0

Aq(z, t)g
(m)
2q (0)

κ(q+m)m!

∫ κ

0
L(r)r(2q+2m−1)/2dr +O(κ−(z+2)/2)

= 2C−1
κ (L)κ−1/2

z/2∑
q=t

z/2−q∑
m=0

Aq(z, t)g
(m)
2q (0)

κ(q+m)m!
µ2(q+m)(L) +O(κ−(z+2)/2).

If Kκ is pth-order kernel, then for z = p, the equation (3) is equal to,

α2t(Kκ) = 2C−1
κ (L)κ−1/2

p/2∑
q=t

p/2−q∑
m=0

κ−(q+m)Aq(p, t)(m!)−1g
(m)
2q (0)µ2(q+m)(L) +O(κ−(p+2)/2)

= 2C−1
κ (L)κ−(p+1)/2

p/2∑
q=t

Aq(p, t)({p/2− q}!)−1g
(p/2−q)
2q (0)µp(L) +O(κ−(p+2)/2)

= 21/2
p/2∑
q=t

Aq(p, t)g
(p/2−q)
2q (0)

{p/2− q}!
µ−1
0 (L)µp(L)κ

−p/2 +O(κ−(p+2)/2)

= bp,2tµ
−1
0 (L)µp(L)κ

−p/2 +O(κ−(p+2)/2).

Appendix-C

Proof of Lemma 3. If κ is large, then δκ1/2,2t(L) = δ2t(L) + o(1) since as

κ → ∞,
∫∞
κ1/2π L(z

2/2)z2tdz = 0 and δ2t(L) is bounded from (iii). Using the

Taylor expansion of cos(κ−1/2z) = 1 − z2/(2κ) + O(κ−2) derives L(κ{1 −
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cos(κ−1/2z)}) = L(z2/2) +O(κ−1). It is given by these and (2) that,

R(Kκ(u)u
t) =

∫ π

−π
{Kκ(u)u

t}2du

= C−2
κ (L)

∫ κ1/2π

−κ1/2π
L2(κ{1− cos(κ−1/2z)})(κ−1/2z)tκ−1/2dz

= C−2
κ (L)κ−(2t+1)/2

∫ κ1/2π

−κ1/2π
[L(z2/2) +O(κ−1)]z2tdz

= C−2
κ (L)κ−(2t+1)/2[δ2t(L) + o(1)]

= 2−1µ−2
0 (L)κ−(2t−1)/2[δ2t(L) + o(1)]

= κ−(2t−1)/2[d2t(L) + o(1)]. (C.1)

Appendix-D

Proof of Theorem 1. Lemma 2 leads to the expectation:

Ef [Kκ(θ − Y )] =

∫ π

−π
Kκ(θ − y)f(y)dy

=

∫ π

−π
Kκ(u)

p+1∑
j=0

f (j)(θ)

j!
uj +O(up+2)

 du

=

p/2∑
t=0

f (2t)

2t!
(θ)α2t(Kκ) +O(αp+2(Kκ))

= f(θ) + µ−1
0 (L)µp(L)κ

−p/2

p/2∑
t=1

bp,2tf
(2t)(θ)

2t!
+O(κ−(p+2)/2).

(D.1)

It follows from (D.1) that,

bias[f̂κ(θ)] = µ−1
0 (L)µp(L)κ

−p/2

p/2∑
t=1

bp,2tf
(2t)(θ)

2t!
+O(κ−(p+2)/2). (D.2)
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It is given by (4) that,

Ef [K
2
κ(θ − Y )] =

∫ π

−π
K2

κ(θ − y)f(y)dy

=

∫ π

−π
K2

κ(u)[f(θ) + f ′(θ)u+O(u2)]du

= R(Kκ)f(θ) +O(R(Kκ(u)u))

= κ1/2[f(θ)d(L) + o(1)]. (D.3)

By (D.1) and (D.3), the variance is reduced to,

n−1Varf [Kκ(θ − Y )] = n−1Ef [K
2
κ(θ − Y )]− n−1Ef [Kκ(θ − Y )]2

= n−1[κ1/2{f(θ)d(L) + o(1)} − n−1{f(θ) + o(1)}2]
= n−1κ1/2f(θ)d(L) + o(n−1κ1/2). (D.4)

(5) is derived from (D.2) and (D.4).

4 Appendix-E

Proof of Theorem 2.√
nκ−1/2[f̂κ(θ)− f(θ)] =

√
nκ−1/2{f̂κ(θ)− E[f̂κ(θ)]}+

√
nκ−1/2bias[f̂κ(θ)].

(E.1)

Notice that,

√
nκ−1/2{f̂κ(θ)− Ef [f̂κ(θ)]} =

√
n

{
n−1

n∑
i=1

κ−1/4Kκ(θ −Θi)− Ef [κ
−1/4Kκ(θ −Θ1)]

}
.

We derive the expectation and the variance of κ−1/4Kκ(θ −Θ1). It follows
from (D.1) that,

Ef [κ
−1/4Kκ(θ −Θ1)] = κ−1/4Ef [Kκ(θ −Θ1)]

= κ−1/4

f(θ) + µ−1
0 (L)µp(L)κ

−p/2

p/2∑
t=1

bp,2tf
(2t)(θ)

2t!
+O(κ−(p+2)/2)

 .

(E.2)

From (E.2), |E[κ−1/4Kκ(θ −Θ1)]| < ∞ is derived.
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It follows from (D.1) and (D.3) that,

Varf [κ
−1/4Kκ(θ −Θ1)] = κ−1/2

{
Ef [K

2
κ(θ −Θ1)]− Ef [Kκ(θ −Θ1)]

2
}

= κ−1/2
[
κ1/2{f(θ)d(L) + o(1)} − {f(θ) + o(1)}2

]
= f(θ)d(L) + o(1). (E.3)

From (E.3), we obtain Varf [κ
−1/4Kκ(θ −Θ1)] < ∞. From (E.2) and (E.3),

the first term of (E.1) satisfies the Lindeberg’s condition Feller (1968):√
nκ−1/2{f̂κ(θ)− Ef [f̂κ(θ)]}

d−→ N(0, f(θ)d(L)). (E.4)

With (D.2) and κ = cnα, the rate of the second term of (E.1) is given as,√
nκ−1/2bias[f̂κ] = O(

√
nκ−(2p+1)/2)

= O(n(2−α(2p+1))/4). (E.5)

If α > 2/(2p+ 1) is chosen, then the convergent rate of (E.5) is equal to,√
nκ−1/2bias[f̂κ] = o(1). (E.6)

For α > 2/(2p + 1) and as n → ∞, Theorem 2 completes the proof from
(E.4) and (E.6).

Appendix-F

Proof of Theorem 1. It follows from (ii) and (iv) that,

µj(L[p+2]) =

∫ ∞

0
L[p+2](r)r

(j−1)/2dr

=
p+ 1

p
µj(L[p]) +

2

p
[L[p](r)r

(j+1)/2]∞0 − 2

p

j + 1

2

∫ ∞

0
L[p](r)r

(j−1)/2dr

=

(
p+ 1

p
− j + 1

p

)
µj(L[p]). (F.1)

Since K[p] is pth -order kernel，the equation (F.1) is reduced to,

µ0(L[p+2]) = µ0(L[p]) , µj(L[p+2]) = 0, j = 2, 4, . . . , p, µp+2(L[p+2]) = −2

p
µp+2(L[p]).

Accodingly, if L[p+2] is (8), K[p+2] has (p+ 2)th-order kernel.
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Appendix-G

Proof of Theorem 2. Put W := f̂κ(θ)− Iκ(θ), Z := f̂κ/4(θ)− Iκ/4(θ). Ter-
rell and Scott (1980) showed the follows,

Ef [f̂
TS
κ (θ)] ≃ Iκ(θ)

4/3Iκ/4(θ)
−1/3, (G.1)

Varf [f̂
TS
κ (θ)] ≃ Varf

[
4

3
W − 1

3
Z

]
. (G.2)

When Kκ is second-order kernel and z=4, the equation (3) is equal to,

α2t(Kκ) = 21/2µ−1
0 (L)

3∑
q=t

3−q∑
m=0

Aq(4, t)g
(m)
2q (0)µ2(q+m)(L)

κq+mm!
+O(κ−3). (G.3)

Let be,

α2,1 := 21/2µ−1
0 (L)µ2(L)A1(4, 1)g2(0),

α2,2 := 21/2µ−1
0 (L)µ4(L)[A1(4, 1)g

(1)
2 (0) +A2(4, 1)g4(0)],

α4,1 := 21/2µ−1
0 (L)µ4(L)A2(4, 2)g4(0).

Then, we can write (G.3) as,

α2(Kκ) = α2,1κ
−1 + α2,2κ

−2 +O(κ−3),

α4(Kκ) = α4,1κ
−2 +O(κ−3),

α6(Kκ) = O(κ−3).

Let be cj := f (j)/j! and Iκ(θ) := Ef [f̂κ(θ)]. By the simular procedure as
Terrell and Scott (1980), log Iκ(θ) is given as,

log Iκ(θ) = log f(θ) +
c2α2,1

f(θ)κ
+

(c2α2,2 + c4α4,1)f(θ)− c22α
2
2,1/2

f2(θ)κ2
+O(κ−3).

(G.4)

For (G.4), taking exponentials of {4 log Iκ(θ)/3 − log Iκ/4(θ)/3} gives the
follows,

Iκ(θ)
4/3Iκ/4(θ)

−1/3 = f(θ) + 4
c22α

2
2,1/2− (c2α2,2 + c4α4,1)f(θ)

f(θ)κ2
+O(κ−3).

(G.5)

15



It follows from (G.1) and (G.5) that,

biasf [f̂
TS
κ (θ)] = G(θ)κ−2 +O(κ−3), (G.6)

where,

G(θ) := 4
c22α

2
2,1/2− (c2α2,2 + c4α4,1)f(θ)

f(θ)
. (G.7)

Let be δκ1/2,2t,4(L) :=
∫ κ1/2π
−κ1/2π L(z

2/2)L(z2/8)z2tdz and δ2t(L) :=
∫∞
−∞ L(z2/2)L(z2/8)z2tdz.

Then, δ2t,4(L) < ∞ and δκ1/2,2t,4(L) = δ2t,4(L) + o(1) since for all z,

L(z2/2) > L(z2/8) and δ2t(L) < ∞. In the same way as (4), this leads
to,∫ π

−π
Kκ(u)Kκ/4(u)u

2tdu = C−1
κ (L)C−1

κ/4(L)

∫ κ1/2π

−κ1/2π
Lκ(κ

−1/2z)Lκ/4(κ
−1/2z)(κ−1/2z)2tκ−1/2dz

= κ−(2t−1)/2[d2t,4(L) + o(1)], (G.8)

where d2t,4(L) := 2−2µ−2
0 (L)δ2t,4(L). (G.8) gives the follows,

Ef [Kκ(θ − Y )Kκ/4(θ − Y )] =

∫ π

−π
Kκ(θ − y)Kκ/4(θ − y)f(θ)dy

=

∫ π

−π
Kκ(u)Kκ/4(u)duf(θ) +O

(∫ π

−π
Kκ(u)Kκ/4(u)u

2du

)
= κ1/2[f(θ)d0,4(L) + o(1)]. (G.9)

It is given by (D.1) and (G.9) that,

Covf [WZ] = n−1Cov[Kκ(θ − Y ),Kκ/4(θ − Y )]

= n−1[κ1/2{f(θ)d0,4(L) + o(1)} − {f(θ) + o(1)}2]
= n−1κ1/2f(θ)d0,4(L) + o(n−1κ1/2). (G.10)

By (D.4) and (G.10), the equation (G.2) is reduced to,

Varf [f̂
TS
κ (θ)] ≃ Varf

[
4

3
W − 1

3
Z

]
=

16

9
Varf [W ]− 8

9
Covf [ZW ] +

1

9
Varf [Z

2]

= n−1κ1/2f(θ)D(L) + o(n−1κ1/2), (G.11)

where,

D(L) :=
33d(L)− 16d0,4(L)

18
. (G.12)
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Appendix-H

Recall that fVM(θ; τ) is von Mises density. Then,

R̂τ̂ (f
(2)
VM) =

3τ̂2I2(2τ̂) + 2τ̂ I1(2τ̂)

8πI20 (τ̂)
,

R̂τ̂

(
5f

(2)
VM

12
+

f
(4)
VM

6

)
=

25R̂τ̂ (f
(2)
VM)

144
−

5R̂τ̂ (f
(3)
VM)

36
+

R̂τ̂ (f
(4)
VM)

36
,

where,

R̂τ̂ (f
(2)
VM) =

3τ̂2I2(2τ̂) + 2τ̂ I1(2τ̂)

8πI20 (τ̂)
,

R̂τ̂ (f
(3)
VM) =

4τ̂ I1(2τ̂) + 30τ̂2I2(2τ̂) + 15τ̂3I3(2τ̂)

16πI20 (τ̂)
,

R̂τ̂ (f
(4)
VM) =

8τ̂2I0(2τ̂) + 105τ̂4I2(2τ̂) + 105τ̂3I3(2τ̂) + 244τ̂2I2(2τ̂)

32πI20 (τ̂)
.

R̂τ̂

(
{f (2)

VM}2

2fVM
−

5f
(2)
VM + 2f

(4)
VM

4

)
=

1

4
R̂τ̂ (f

(2)
VM/f−1

VM) +
25

16
R̂τ̂ (f

(2)
VM)

− 5

4
R̂τ̂ (f

(3)
VM) +

1

4
R̂τ̂ (f

(4)
VM)

− 5

4

∫ π

−π
{f (2)

VM(θ)}3f−1
VM(θ)dθ

− 1

2

∫ π

−π
{f (2)

VM(θ)}2f (4)
VM(θ)f−1

VM(θ)dθ,

where,

R̂τ̂ (f
(2)
VM/f−1

VM) =
41τ̂4I2(2τ̂) + 12τ̂2I2(τ̂)− 87τ̂3I3(2τ̂)

32πI0(τ̂)2
,∫ π

−π
{f (2)(θ)}3f−1(θ)dθ =

4τ̂3I1(2τ̂)− 14τ̂2I2(2τ̂)− 3τ̂3I3(2τ̂)

16πI0(τ̂)2
,∫ π

−π
{f (2)

VM(θ)}2f (4)
VM(θ)f−1

VM(θ)dθ =
36τ̂2I2(2τ̂) + 9τ̂4I2(2τ̂) + 25τ̂3I3(2τ̂)

32πI0(τ̂)2
.
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