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Abstract

We discuss theoretical properties of the Wrapped Cauchy (WC)
kernel. In this paper, we show that the WC kernel has the convergent
rate of O(n−2/3) and holds the asymptotic normality. The rate of the
WC kernel is not better than the rate O(n−4/5) of the von Mises (VM)
kernel. However, some numerical experiments show the better behavior
of the WC kernel rather than the VM kernel under the condition of
the multimodality and/or the heavy tail.

1 Introduction

Directional data are represented by an angle (θ ∈ [0, 2π), θ = θ+2mπ, m ∈
Z) or a unit vector (x = (cos(θ), sin(θ))T ). Some examples of directional
data are wind directions and electric power over a period of 24 hours and
so on. For the preceding work of the kernel density estimation on the circle,
see Hall et al. (1987), C. C. Taylor (2008), Di Marzio et al. (2009, 2011).

Di Marzio et al. (2009, 2011) introduced the moments of sin-order p for
the kernel on the circle. Its idea is somewhat similar to the moments of order
p on the real line. The kernel of sin-order 2 includes the von Mises (VM)
kernel, the wrapped Cauchy (WC) kernel and the wrapped normal kernel.
Di Marzio et al. (2009, 2011) derived asymptotic mean integrated square
error (AMISE) via the definition of the kernel functions with sin-order p.
They show the convergent rate of the VM kernel is O(n−4/5). This rate is
equivalent to the convergent rate of the kernels of second order on the real
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line. However, the convergent rate of the AMISE can not be derived without
specifying the kernel.

We show that theWC kernel has the optimal rateO(n−2/3) of the AMISE
and the asymptotic normality. Di Marzio et al. (2011) mentioned the
another expression about the asymptotic normality of the circular kernel
function. The WC kernel is inferior to the VM kernel with respect to the
theoretical aspect of the MISE. However, our numerical experiments show
that the WC kernel is superior to the VM kernel under the condition of the
multimodal and/or the heavy tail.

2 Properties of AMISE of a circular kernel density
estimation

Following Di Marzio et al. (2009, 2011), this section briefly refers definitions
of the kernel function and properties of the AMISE.

2.1 Definition

Definiton 1. (Kernel function)
Let Kκ(θ) be a circular kernel function and κ be a concentration param-

eter (κ is a smoothing parameter corresponding to the inverse of bandwidth
on the real line), where Kκ(θ) : [0, 2π) → R is such that

(a) it admits an uniformly convergent Fourier series,

Kκ(θ) = (2π)−1{1 +
∞∑
j=1

γj(κ) cos(jθ)}, θ ∈ [0, 2π),

where γj(θ) is strictly monotonic function of κ,

(b)
∫ 2π
0 Kκ = 1, and if Kκ(θ) takes negative values, there exists 0 < M <

∞ such that,
∫ 2π
0 |Kκ|dθ ≤ M , for all κ > 0,

(c) limκ→∞
∫ 2π−δ
δ |Kκ(θ)|dθ = 0, for all 0 < δ < π.

Definiton 2. (Sin-order moment of the circular kernel)
Let ηj(Kκ) :=

∫ 2π
0 sinj(θ)Kκ(θ)dθ. Kκ of sin-order p is chosen so that,

η0(Kκ) = 1, ηj(Kκ) = 0, 0 < j < p, and ηp(Kκ) ̸= 0.
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If ηj(Kκ) is j = 2s(s = 1, 2, . . .), then ηj(Kκ) is also represented by the
sum of Fourier series γj(κ) :

ηj(Kκ) =
1

22s−1

(j − 1

j/2

)
+

j/2∑
s=1

(−1)j+s

(
j

j/2 + s

)
γ2s(κ)

 . (1)

Definiton 3. (Kernel density estimator)
Let Θ1, . . . ,Θn be random sample from the unknown circular density

f(θ). Given a circular kernel Kκ, the kernel estimator of f is defined as,

f̂(θ;κ) :=
1

n

n∑
i=1

Kκ(θ −Θi).

2.2 Theoretical properties

Theorem 1. (AMISE)
Under the following conditions:

(A) κ increases as n → ∞. for each j ∈ Z+,limn→∞ γj(κ) = 1,

(B) limn→∞ n−1
∑∞

j=1 γ
2
j (κ) = 0,

(C) f ′′is continuous and square-integrable,

the second sin-order kernel has,

AMISE[f̂(·;κ)] = η22(Kκ)

4
R
(
f ′′)+ R (Kκ)

n
, (2)

where
∫ 2π
0 {g(θ)}2dθ = R(g), η2(Kκ) = 1

2(1 − γ2(κ)) and R(Kκ) = (1 +
2
∑∞

i=1 γ
2
j (κ))/(2π). The right-hand side terms of (2) correspond to ISB

and IV, respectively.

The convergent rate of AMISE can not be derived without choosing
specific kernel, since (2) depends on the kernel function Kκ. Di Marzio et
al. (2009, 2011) derived AMISE of the VM kernel.

The VM kernel is defined as,

Kκ(θ) :=
1

2πI0(κ)
exp{κ cos θ}, 0 < κ < ∞,

where Ip(κ) denotes the modified Bessel function of the first kind with order
p. The characteristic function of VM kernel is defined as,

ϕp =
Ip(κ)

I0(κ)
p = 0,±1, . . . ,±n, · · · .
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Proposition 1. (AMISE of VM kernel)
Noting γj(κ) = Ij(κ)/I0(κ), the AMISE of the VM kernel is given as the

following form :

AMISEVM[f̂(·;κ)] = 1

16

{
1− I2(κ)

I0(κ)

}2

R
(
f ′′)+ 1 + 2

∑∞
j=1{Ij(κ)/I0(κ)}2

2nπ
.

(3)

Under the condition that κ is sufficiently large, the asymptotic form (3)
is reduced to,

AMISEVM[f̂(·;κ)] = 1

4κ2
R
(
f ′′)+ κ1/2

2nπ1/2
. (4)

We obtain the optimum κ∗:

κ∗ =
(
2π1/2R

(
f ′′)n)2/5

. (5)

From (4) and (5), AMISEVM = O(n−4/5) is derived. Note that that
O(n−4/5) is equivalent to the convergent rate of the second-order kernels on
the real line.

3 Properties of the Wrapped Cauchy kernel

The WC kernel is defined as,

Kρ(θ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ)
, 0 < ρ ≤ 1.

where ρ is concentration parameter. The characteristic function of the WC
kernel is equal to,

ϕp = ρ|p|, p = 0,±1, . . . ,±n, · · · .

Theorem 2. (AMISE of WC kernel)
The AMISE of the WC kernel is given as the follows,

AMISEWC[f̂(·; ρ)] =
{1− ρ2}2R (f ′′)

16
+

1

nπ(1− ρ2)
. (6)

Let be 1− ρ2 = h, 0 ≤ h < 1. Then, (6) is expressed as,

AMISEWC[f̂(·;h)] =
h2R (f ′′)

16
+

1

nπh
. (7)
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See Appendix-A for the details.
In the similar way of Propositon 1. we obtain the optimum h∗:

h∗ =

(
8

πR (f ′′)n

)1/3

, (8)

under the condition of n > 8(πR (f ′′))−1. The optimal following convergent
rate of AMISEWC is given by (7) and (8) as n is sufficiently large:

AMISEWC = O(n−2/3). (9)

We should use ρ∗ which minimize (6) as the practically optimal concen-
trating parameter, since (8) is larger than one if n ≤ 8(πR (f ′′))−1. ρ∗ is
given (7) and (8) as follows,

ρ∗ = arg min
0<ρ≤1

{
AMISEWC[f̂(·; ρ)]

}
. (10)

We put f̂ρ as f̂h with h = (1− ρ2).

Theorem 3. (Asymptotic Normality)

Let be Θ1,Θ2, · · ·Θn
i.i.d.∼ f(θ), h = cn−α and 0 ≤ h < 1．If α > 1/3,

hold, then

√
nh[f̂h(θ)− f(θ)]

d−→ N(0, f(θ)/π), n → ∞. (11)

See Appendix-B for the details.
The optimal convergent rate O(n−2/3) of the AMISE of the WC kernel

differs from the rate O(n−4/5) of the VM kernel, although Both the WC
kernel and the VM kernel are the second sin-order kernel. The Cauchy
kernel on the real line has the optimal convergent rate O(n−2/3) by Davis
(1975). The rate O(n−2/3) of the WC kernel correspond to the rates of
kernel family of order 0 such as the histogram and the Cauchy kernel.

We consider that the corespondence between the characteristic functions
of the WC kernel and the Cauchy kernel causes the correspondence between
the two rates. Mardia and Jupp (1999, p48 (3.5.59)) said the characteristic
function of the WC Kernel corresponds that of Cauchy kernel ϕ(p) = e−a|p|.
However, each of the inversion theorem is different. The inversion theorem
of the WC kernel is Fourier series expansion, while that Cauchy kernel is
Fourier transform.

5



4 Simulation

The optimal concentration parameter depends on R (f ′′). The plug-in rule is
the procedure to estimate the optimal concentration parameter with R̂(f

′′
)

as an estimator for R (f ′′). The simplest rule among some plug-in rules
is the procedure to assume that the true density f is the von Mises den-
sity fVM. The simplest plug-in rule uses R̂(f

′′
VM(·; κ̂)) as the estimator for

R (f ′′), where κ is the concentration parameter of fVM and κ̂ is the max-
imum likelihood estimator of κ. R̂(f

′′
VM(·; κ̂)) corresponds to the following

form:

R̂(f
′′
VM(·; κ̂)) = κ̂[3κ̂I2(2κ̂) + 2I1(2κ̂)]

8πI20 (κ̂)
. (12)

The normal procedure of plug-in rule is shown as,

i) Estimate κ̂ from the sample and calculate R̂(f
′′
VM(·; κ̂)) from κ̂,

ii) WC kernel: Estimate ρ∗ which minimize (6) by substituting R̂(f
′′
VM(·; κ̂))

for R (f ′′) in (6),

iii) VM kernel : Estimate κ∗ by substituting R̂(f
′′
VM(·; κ̂)) for R (f ′′) in

(5).

Our simulation is given as,

1. The WC kernel:

(a) Let a true density be a mixture of the von Mises density:

f(θ)MVM =
1

2
fVM1(θ;µ1, κ1) +

1

2
fVM2(θ;µ2, κ2), (13)

where let be µ1 = π/2, µ2 = 3π/2 and κ1 = κ2 = κ. Generate
the random sample of the size n distributed as (13),

(b) Estimate ρ∗ by the plug-in rule,

(c) Let ISE =
∫ 2π
0 {f̂(θ; ρ)−f(θ)}2dθ, Let ISE(f̂(·; ρ)) be the numer-

ical integration of ISE. Calculate ISE(f̂(·; ρ),
(d) Repeat (a)-(c) 1000 times and compute MISE(f̂(·; ρ)) =

∑1000
i=1 ISEi(f̂(·; ρ))/1000.

2. The VM kernel :
With the same procedures as (a) - (d) of the WC kernel, compute
MISE(f̂(·;κ∗)),
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Table 1: MISE(f̂κ∗)−MISE(f̂ρ∗). n is sample size, κ is represented as con-
centrate parameter of true density f .

n = 10 50 100 200 500 1000

κ = 0.3 0.011 0.002 0.001 0 0 0
0.5 0.012 0.002 0.001 0 0 0
0.7 0.011 0.002 0.001 0 0 0
1 0.012 0.001 0 0 0 0
2 0.007 -0.004 -0.005 -0.005 -0.005 -0.005
5 -0.017 -0.023 -0.025 -0.024 -0.024 -0.023
10 -0.032 -0.036 -0.037 -0.037 -0.037 -0.037
15 -0.037 -0.044 -0.043 -0.042 -0.042 -0.042
20 -0.039 -0.045 -0.045 -0.045 -0.048 -0.046

3. Calculate MISE(f̂(·;κ∗))−MISE(f̂(·; ρ∗)), where it round off decimal
point forth place.

The result of Table 1 indicates that the WC kernel is superior to the
VM kernel under that n is not sufficiently large (n ≤ 100) and f has the
multimodal and/or the heavy tail. This difference between the WC kernel
and the VM kernel tends to become smaller as n become larger.

5 Conclusion

This paper shows that the WC kernel has the convergent rate O(n−2/3) of
the AMISE and holds the asymptotic normality. However, the convergent
rate of the VM kernel is O(n−4/5). In other words, the rate of the WC kernel
and that of the VM kernel do not equal in spite of the same second sin-order
kernel.

The convergent rate of the AMISE of the WC kernel corresponds to the
rate of Cauchy kernel, since the characteristic function of the WC kernel
corresponds to the one of Cauchy kernel.

The WC kernel is not better than the VM kernel with respect to the
AMISE convergent rate. However, the result of our simulation shows that
the WC kernel is superior to the VM kernel if a true density f has the
multimodal and/or the heavy tail.
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6 Appendix

6.1 Appendix-A

proof of Theorem 2. The WC kernel has γj(ρ) = ρjand η2(Kρ) = (1−ρ2)/2.
Since for small values of u, sin(u) ≃ u, we use the expansion f(θ + u) ≃
f(θ) + f ′(θ) sin(u) + f ′′(θ) sin2(u)/2 +O(sin3(u)).

Ef [Kρ(θ − Y )] =

∫
Kρ(θ − y)f(y)dy

=

∫
Kρ(u)f(θ + u)du

=

∫
Kρ(u)[f(θ) + f ′(θ) sin(u) + f ′′(θ) sin2(u)/2 +O(sin3(u))]

= f(θ) +
1

2
η2(Kρ)f

′′(θ) + o(1)

= f(θ) +
1

4
(1− ρ2)f ′′(θ) + o(1). (14)

R(Kρ) =
1 + 2

∑∞
j=1(ρ

j)2

2π

=
1 + 2ρ2

1−ρ2

2π

=
1 + ρ2

2π(1− ρ2)

=
1

π(1− ρ2)
− 1

2π
. (15)

It follows from (15) that

n−1Varf [Kρ(θ − Y )] = n−1
{
Ef [K

2
ρ(θ − Y )]− Ef [Kρ(θ − Y )]2

}
= n−1

[
1

π(1− ρ2)
− 1

2π

]
{f(θ) + o(1)} − n−1[f(θ) + o(1)]

=
f(θ)

πn(1− ρ2)
+ o(n−1(1− ρ2)−1). (16)
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6.2 Appendix-B

proof of Theorem 3. Put h = (1− ρ2), Write (14) and (16) as,

Ef [Kh(θ −Θ1)] ≃ f(θ) +
1

4
hf ′′(θ) + o(1), (17)

Varf [Kh(θ −Θ1)] =
f(θ)

πh
+ o(h−1). (18)

√
nh[f̂h(θ)− f(θ)] =

√
nh{f̂h(θ)− E[f̂h(θ)]}+

√
nhbias[f̂h(θ)]. (19)

The first term of (19) is equal to,

√
nh{f̂h(θ)− Ef [f̂h(θ)]} =

√
n

{
n−1

n∑
i=1

h1/2Kh(θ −Θi)− Ef [h
1/2Kh(θ −Θ1)]

}
.

(20)

Ef [h
1/2Kh(θ −Θ1)] = h1/2Ef [Kh(θ −Θ1)]

≃ h1/2

[
f(θ) +

f (′′)(θ)

4
h

]
, (21)

it is shown that 0 ≤ |E[h1/2Kh(θ −Θ1)]| < ∞ from (21).
From (18), We obtain the following form:

Varf [h
1/2Kh(θ −Θ1)] = hVar[Kh(θ −Θ1)]

= h

[
f(θ)

πh
+ o(h−1)

]
=

f(θ)

π
+ o(1)

≃ f(θ)

π
, (22)

it is shown that Varf [h
1/2Kh(θ −Θ1)] < ∞ from (22).

Since (20) satisfies the condition of Lindeberg (Feller (1968, p.244)) from
(21) and (22), it is given as the follows,

√
nh{f̂h(θ)− Ef [f̂h(θ)]}

d−→ N(0, f(θ)/π), n → ∞. (23)
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The order of the second term of (19) is equal to,
√
nhbias[f̂h] =

√
nhO(h)

= O(
√
nh3). (24)

with h = cn−α, we obtain the follows,
√
nh3 ∼ n1/2n−3α/2

= n(1−3α)/2.

When α > 1/3 is chosen, then (24) is given as the following form:

√
nhbias[f̂h(θ)] = O(

√
nh3)

= o(1). (25)

For α > 1/3 and as n → ∞, Theorem 3 completes the proof from (23) and
(25).
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